[algorithm] Big O, how do you calculate/approximate it?

If you want to estimate the order of your code empirically rather than by analyzing the code, you could stick in a series of increasing values of n and time your code. Plot your timings on a log scale. If the code is O(x^n), the values should fall on a line of slope n.

This has several advantages over just studying the code. For one thing, you can see whether you're in the range where the run time approaches its asymptotic order. Also, you may find that some code that you thought was order O(x) is really order O(x^2), for example, because of time spent in library calls.

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to optimization

Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Measuring execution time of a function in C++ GROUP BY having MAX date How to efficiently remove duplicates from an array without using Set Storing JSON in database vs. having a new column for each key Read file As String How to write a large buffer into a binary file in C++, fast? Is optimisation level -O3 dangerous in g++? Why is processing a sorted array faster than processing an unsorted array? MySQL my.cnf performance tuning recommendations

Examples related to complexity-theory

Differences between time complexity and space complexity? Determining complexity for recursive functions (Big O notation) How to find time complexity of an algorithm How can building a heap be O(n) time complexity? HashMap get/put complexity Big-oh vs big-theta Is log(n!) = T(n·log(n))? Time complexity of accessing a Python dict What are the differences between NP, NP-Complete and NP-Hard? What's the fastest algorithm for sorting a linked list?

Examples related to big-o

Differences between time complexity and space complexity? Determining complexity for recursive functions (Big O notation) What exactly does big ? notation represent? How to merge two sorted arrays into a sorted array? Time complexity of Euclid's Algorithm Are there any worse sorting algorithms than Bogosort (a.k.a Monkey Sort)? Append an object to a list in R in amortized constant time, O(1)? What does O(log n) mean exactly? Is log(n!) = T(n·log(n))? Difference between Big-O and Little-O Notation

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder