Here's intuitive understanding of runtime complexity of Euclid's algorithm. The formal proofs are covered in various texts such as Introduction to Algorithms and TAOCP Vol 2.
First think about what if we tried to take gcd of two Fibonacci numbers F(k+1) and F(k). You might quickly observe that Euclid's algorithm iterates on to F(k) and F(k-1). That is, with each iteration we move down one number in Fibonacci series. As Fibonacci numbers are O(Phi ^ k) where Phi is golden ratio, we can see that runtime of GCD was O(log n) where n=max(a, b) and log has base of Phi. Next, we can prove that this would be the worst case by observing that Fibonacci numbers consistently produces pairs where the remainders remains large enough in each iteration and never become zero until you have arrived at the start of the series.
We can make O(log n) where n=max(a, b) bound even more tighter. Assume that b >= a so we can write bound at O(log b). First, observe that GCD(ka, kb) = GCD(a, b). As biggest values of k is gcd(a,c), we can replace b with b/gcd(a,b) in our runtime leading to more tighter bound of O(log b/gcd(a,b)).