O(n) is big O notation used for writing time complexity of an algorithm. When you add up the number of executions in an algoritm you'll get an expression in result like 2N+2, in this expression N is the dominating term(the term having largest effect on expression if its value increases or decreases). Now O(N) is the time comlexity while N is dominating term. Example
For i= 1 to n;
j= 0;
while(j<=n);
j=j+1;
here total number of executions for inner loop are n+1 and total number of executions for outer loop are n(n+1)/2, so total number of executions for whole algorithm are n+1+n(n+1/2) = (n^2+3n)/2. here n^2 is the dominating term so the time complexity for this algorithm is O(n^2)