[algorithm] How to find time complexity of an algorithm

Although there are some good answers for this question. I would like to give another answer here with several examples of loop.

  • O(n): Time Complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount. For example following functions have O(n) time complexity.

    // Here c is a positive integer constant   
    for (int i = 1; i <= n; i += c) {  
        // some O(1) expressions
    }
    
    for (int i = n; i > 0; i -= c) {
        // some O(1) expressions
    }
    
  • O(n^c): Time complexity of nested loops is equal to the number of times the innermost statement is executed. For example the following sample loops have O(n^2) time complexity

    for (int i = 1; i <=n; i += c) {
       for (int j = 1; j <=n; j += c) {
          // some O(1) expressions
       }
    }
    
    for (int i = n; i > 0; i += c) {
       for (int j = i+1; j <=n; j += c) {
          // some O(1) expressions
    }
    

    For example Selection sort and Insertion Sort have O(n^2) time complexity.

  • O(Logn) Time Complexity of a loop is considered as O(Logn) if the loop variables is divided / multiplied by a constant amount.

    for (int i = 1; i <=n; i *= c) {
       // some O(1) expressions
    }
    for (int i = n; i > 0; i /= c) {
       // some O(1) expressions
    }
    

    For example Binary Search has O(Logn) time complexity.

  • O(LogLogn) Time Complexity of a loop is considered as O(LogLogn) if the loop variables is reduced / increased exponentially by a constant amount.

    // Here c is a constant greater than 1   
    for (int i = 2; i <=n; i = pow(i, c)) { 
       // some O(1) expressions
    }
    //Here fun is sqrt or cuberoot or any other constant root
    for (int i = n; i > 0; i = fun(i)) { 
       // some O(1) expressions
    }
    

One example of time complexity analysis

int fun(int n)
{    
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j < n; j += i)
        {
            // Some O(1) task
        }
    }    
}

Analysis:

For i = 1, the inner loop is executed n times. For i = 2, the inner loop is executed approximately n/2 times. For i = 3, the inner loop is executed approximately n/3 times. For i = 4, the inner loop is executed approximately n/4 times. ……………………………………………………. For i = n, the inner loop is executed approximately n/n times.

So the total time complexity of the above algorithm is (n + n/2 + n/3 + … + n/n), Which becomes n * (1/1 + 1/2 + 1/3 + … + 1/n)

The important thing about series (1/1 + 1/2 + 1/3 + … + 1/n) is equal to O(Logn). So the time complexity of the above code is O(nLogn).


Ref: 1 2 3

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to time-complexity

Find common substring between two strings Why is the time complexity of both DFS and BFS O( V + E ) How to find time complexity of an algorithm Hash table runtime complexity (insert, search and delete) matrix multiplication algorithm time complexity how to calculate binary search complexity What are the time complexities of various data structures? Complexities of binary tree traversals Time complexity of Euclid's Algorithm What does O(log n) mean exactly?

Examples related to complexity-theory

Differences between time complexity and space complexity? Determining complexity for recursive functions (Big O notation) How to find time complexity of an algorithm How can building a heap be O(n) time complexity? HashMap get/put complexity Big-oh vs big-theta Is log(n!) = T(n·log(n))? Time complexity of accessing a Python dict What are the differences between NP, NP-Complete and NP-Hard? What's the fastest algorithm for sorting a linked list?