For the Collatz problem, you can get a significant boost in performance by caching the "tails". This is a time/memory trade-off. See: memoization (https://en.wikipedia.org/wiki/Memoization). You could also look into dynamic programming solutions for other time/memory trade-offs.
Example python implementation:
import sys
inner_loop = 0
def collatz_sequence(N, cache):
global inner_loop
l = [ ]
stop = False
n = N
tails = [ ]
while not stop:
inner_loop += 1
tmp = n
l.append(n)
if n <= 1:
stop = True
elif n in cache:
stop = True
elif n % 2:
n = 3*n + 1
else:
n = n // 2
tails.append((tmp, len(l)))
for key, offset in tails:
if not key in cache:
cache[key] = l[offset:]
return l
def gen_sequence(l, cache):
for elem in l:
yield elem
if elem in cache:
yield from gen_sequence(cache[elem], cache)
raise StopIteration
if __name__ == "__main__":
le_cache = {}
for n in range(1, 4711, 5):
l = collatz_sequence(n, le_cache)
print("{}: {}".format(n, len(list(gen_sequence(l, le_cache)))))
print("inner_loop = {}".format(inner_loop))