[java] Why is 2 * (i * i) faster than 2 * i * i in Java?

The following Java program takes on average between 0.50 secs and 0.55 secs to run:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

If I replace 2 * (i * i) with 2 * i * i, it takes between 0.60 and 0.65 secs to run. How come?

I ran each version of the program 15 times, alternating between the two. Here are the results:

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

The fastest run of 2 * i * i took longer than the slowest run of 2 * (i * i). If they had the same efficiency, the probability of this happening would be less than 1/2^15 * 100% = 0.00305%.

This question is related to java performance benchmarking bytecode jit

The answer is


I got similar results:

2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736

I got the SAME results if both loops were in the same program, or each was in a separate .java file/.class, executed on a separate run.

Finally, here is a javap -c -v <.java> decompile of each:

     3: ldc           #3                  // String 2 * (i * i):
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: iload         4
    30: imul
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

vs.

     3: ldc           #3                  // String 2 * i * i:
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: imul
    29: iload         4
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

FYI -

java -version
java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

I tried a JMH using the default archetype: I also added an optimized version based on Runemoro's explanation.

@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
  @Param({ "100", "1000", "1000000000" })
  private int size;

  @Benchmark
  public int two_square_i() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * (i * i);
    }
    return n;
  }

  @Benchmark
  public int square_i_two() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += i * i;
    }
    return 2*n;
  }

  @Benchmark
  public int two_i_() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * i * i;
    }
    return n;
  }
}

The result are here:

Benchmark                           (size)  Mode  Samples          Score   Score error  Units
o.s.MyBenchmark.square_i_two           100  avgt       10         58,062         1,410  ns/op
o.s.MyBenchmark.square_i_two          1000  avgt       10        547,393        12,851  ns/op
o.s.MyBenchmark.square_i_two    1000000000  avgt       10  540343681,267  16795210,324  ns/op
o.s.MyBenchmark.two_i_                 100  avgt       10         87,491         2,004  ns/op
o.s.MyBenchmark.two_i_                1000  avgt       10       1015,388        30,313  ns/op
o.s.MyBenchmark.two_i_          1000000000  avgt       10  967100076,600  24929570,556  ns/op
o.s.MyBenchmark.two_square_i           100  avgt       10         70,715         2,107  ns/op
o.s.MyBenchmark.two_square_i          1000  avgt       10        686,977        24,613  ns/op
o.s.MyBenchmark.two_square_i    1000000000  avgt       10  652736811,450  27015580,488  ns/op

On my PC (Core i7 860 - it is doing nothing much apart from reading on my smartphone):

  • n += i*i then n*2 is first
  • 2 * (i * i) is second.

The JVM is clearly not optimizing the same way than a human does (based on Runemoro's answer).

Now then, reading bytecode: javap -c -v ./target/classes/org/sample/MyBenchmark.class

I am not expert on bytecode, but we iload_2 before we imul: that's probably where you get the difference: I can suppose that the JVM optimize reading i twice (i is already here, and there is no need to load it again) whilst in the 2*i*i it can't.


The two methods of adding do generate slightly different byte code:

  17: iconst_2
  18: iload         4
  20: iload         4
  22: imul
  23: imul
  24: iadd

For 2 * (i * i) vs:

  17: iconst_2
  18: iload         4
  20: imul
  21: iload         4
  23: imul
  24: iadd

For 2 * i * i.

And when using a JMH benchmark like this:

@Warmup(iterations = 5, batchSize = 1)
@Measurement(iterations = 5, batchSize = 1)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MyBenchmark {

    @Benchmark
    public int noBrackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int brackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * (i * i);
        }
        return n;
    }

}

The difference is clear:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: <none>

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  380.889 ± 58.011  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  512.464 ± 11.098  ms/op

What you observe is correct, and not just an anomaly of your benchmarking style (i.e. no warmup, see How do I write a correct micro-benchmark in Java?)

Running again with Graal:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  335.100 ± 23.085  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  331.163 ± 50.670  ms/op

You see that the results are much closer, which makes sense, since Graal is an overall better performing, more modern, compiler.

So this is really just up to how well the JIT compiler is able to optimize a particular piece of code, and doesn't necessarily have a logical reason to it.


(Editor's note: this answer is contradicted by evidence from looking at the asm, as shown by another answer. This was a guess backed up by some experiments, but it turned out not to be correct.)


When the multiplication is 2 * (i * i), the JVM is able to factor out the multiplication by 2 from the loop, resulting in this equivalent but more efficient code:

int n = 0;
for (int i = 0; i < 1000000000; i++) {
    n += i * i;
}
n *= 2;

but when the multiplication is (2 * i) * i, the JVM doesn't optimize it since the multiplication by a constant is no longer right before the n += addition.

Here are a few reasons why I think this is the case:

  • Adding an if (n == 0) n = 1 statement at the start of the loop results in both versions being as efficient, since factoring out the multiplication no longer guarantees that the result will be the same
  • The optimized version (by factoring out the multiplication by 2) is exactly as fast as the 2 * (i * i) version

Here is the test code that I used to draw these conclusions:

public static void main(String[] args) {
    long fastVersion = 0;
    long slowVersion = 0;
    long optimizedVersion = 0;
    long modifiedFastVersion = 0;
    long modifiedSlowVersion = 0;

    for (int i = 0; i < 10; i++) {
        fastVersion += fastVersion();
        slowVersion += slowVersion();
        optimizedVersion += optimizedVersion();
        modifiedFastVersion += modifiedFastVersion();
        modifiedSlowVersion += modifiedSlowVersion();
    }

    System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
    System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
    System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
    System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
    System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}

private static long fastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long slowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

private static long optimizedVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += i * i;
    }
    n *= 2;
    return System.nanoTime() - startTime;
}

private static long modifiedFastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long modifiedSlowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

And here are the results:

Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s

Byte codes: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html Byte codes Viewer: https://github.com/Konloch/bytecode-viewer

On my JDK (Windows 10 64 bit, 1.8.0_65-b17) I can reproduce and explain:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

Output:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

So why? The byte code is this:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

The difference being: With brackets (2 * (i * i)):

  • push const stack
  • push local on stack
  • push local on stack
  • multiply top of stack
  • multiply top of stack

Without brackets (2 * i * i):

  • push const stack
  • push local on stack
  • multiply top of stack
  • push local on stack
  • multiply top of stack

Loading all on the stack and then working back down is faster than switching between putting on the stack and operating on it.


While not directly related to the question's environment, just for the curiosity, I did the same test on .NET Core 2.1, x64, release mode.

Here is the interesting result, confirming similar phonomena (other way around) happening over the dark side of the force. Code:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

Result:

2 * (i * i)

  • result:119860736, 438 ms
  • result:119860736, 433 ms
  • result:119860736, 437 ms
  • result:119860736, 435 ms
  • result:119860736, 436 ms
  • result:119860736, 435 ms
  • result:119860736, 435 ms
  • result:119860736, 439 ms
  • result:119860736, 436 ms
  • result:119860736, 437 ms

2 * i * i

  • result:119860736, 417 ms
  • result:119860736, 417 ms
  • result:119860736, 417 ms
  • result:119860736, 418 ms
  • result:119860736, 418 ms
  • result:119860736, 417 ms
  • result:119860736, 418 ms
  • result:119860736, 416 ms
  • result:119860736, 417 ms
  • result:119860736, 418 ms

Interesting observation using Java 11 and switching off loop unrolling with the following VM option:

-XX:LoopUnrollLimit=0

The loop with the 2 * (i * i) expression results in more compact native code1:

L0001: add    eax,r11d
       inc    r8d
       mov    r11d,r8d
       imul   r11d,r8d
       shl    r11d,1h
       cmp    r8d,r10d
       jl     L0001

in comparison with the 2 * i * i version:

L0001: add    eax,r11d
       mov    r11d,r8d
       shl    r11d,1h
       add    r11d,2h
       inc    r8d
       imul   r11d,r8d
       cmp    r8d,r10d
       jl     L0001

Java version:

java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)

Benchmark results:

Benchmark          (size)  Mode  Cnt    Score     Error  Units
LoopTest.fast  1000000000  avgt    5  694,868 ±  36,470  ms/op
LoopTest.slow  1000000000  avgt    5  769,840 ± 135,006  ms/op

Benchmark source code:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {

    @Param("1000000000") private int size;

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
            .include(LoopTest.class.getSimpleName())
            .jvmArgs("-XX:LoopUnrollLimit=0")
            .build();
        new Runner(opt).run();
    }

    @Benchmark
    public int slow() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * i * i;
        return n;
    }

    @Benchmark
    public int fast() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * (i * i);
        return n;
    }
}

1 - VM options used: -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -XX:LoopUnrollLimit=0


More of an addendum. I did repro the experiment using the latest Java 8 JVM from IBM:

java version "1.8.0_191"
Java(TM) 2 Runtime Environment, Standard Edition (IBM build 1.8.0_191-b12 26_Oct_2018_18_45 Mac OS X x64(SR5 FP25))
Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)

And this shows very similar results:

0.374653912 s
n = 119860736
0.447778698 s
n = 119860736

(second results using 2 * i * i).

Interestingly enough, when running on the same machine, but using Oracle Java:

Java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

results are on average a bit slower:

0.414331815 s
n = 119860736
0.491430656 s
n = 119860736

Long story short: even the minor version number of HotSpot matter here, as subtle differences within the JIT implementation can have notable effects.


Kasperd asked in a comment of the accepted answer:

The Java and C examples use quite different register names. Are both example using the AMD64 ISA?

xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2

I don't have enough reputation to answer this in the comments, but these are the same ISA. It's worth pointing out that the GCC version uses 32-bit integer logic and the JVM compiled version uses 64-bit integer logic internally.

R8 to R15 are just new X86_64 registers. EAX to EDX are the lower parts of the RAX to RDX general purpose registers. The important part in the answer is that the GCC version is not unrolled. It simply executes one round of the loop per actual machine code loop. While the JVM version has 16 rounds of the loop in one physical loop (based on rustyx answer, I did not reinterpret the assembly). This is one of the reasons why there are more registers being used since the loop body is actually 16 times longer.


Examples related to java

Under what circumstances can I call findViewById with an Options Menu / Action Bar item? How much should a function trust another function How to implement a simple scenario the OO way Two constructors How do I get some variable from another class in Java? this in equals method How to split a string in two and store it in a field How to do perspective fixing? String index out of range: 4 My eclipse won't open, i download the bundle pack it keeps saying error log

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to benchmarking

Why is 2 * (i * i) faster than 2 * i * i in Java? ab load testing Why is reading lines from stdin much slower in C++ than Python? Execution time of C program How to use clock() in C++ Clang vs GCC - which produces faster binaries? How to Calculate Execution Time of a Code Snippet in C++ Which is faster: multiple single INSERTs or one multiple-row INSERT? What do 'real', 'user' and 'sys' mean in the output of time(1)? How do I write a correct micro-benchmark in Java?

Examples related to bytecode

Why is 2 * (i * i) faster than 2 * i * i in Java? Can you "compile" PHP code and upload a binary-ish file, which will just be run by the byte code interpreter? C++ performance vs. Java/C#

Examples related to jit

Why is 2 * (i * i) faster than 2 * i * i in Java? Why shouldn't I use PyPy over CPython if PyPy is 6.3 times faster? What does a just-in-time (JIT) compiler do?