[python] How to iterate through two lists in parallel?

I have two iterables in Python, and I want to go over them in pairs:

foo = (1, 2, 3)
bar = (4, 5, 6)

for (f, b) in some_iterator(foo, bar):
    print("f: ", f, "; b: ", b)

It should result in:

f: 1; b: 4
f: 2; b: 5
f: 3; b: 6

One way to do it is to iterate over the indices:

for i in range(len(foo)):
    print("f: ", foo[i], "; b: ", bar[i])

But that seems somewhat unpythonic to me. Is there a better way to do it?

This question is related to python list for-loop iterator

The answer is


Python 3:

import itertools as it

for foo, bar in list(it.izip_longest(list1, list2)):
    print(foo, bar)

You can bundle the nth elements into a tuple or list using comprehension, then pass them out with a generator function.

def iterate_multi(*lists):
    for i in range(min(map(len,lists))):
        yield tuple(l[i] for l in lists)

for l1, l2, l3 in iterate_multi([1,2,3],[4,5,6],[7,8,9]):
    print(str(l1)+","+str(l2)+","+str(l3))

Building on the answer by @unutbu, I have compared the iteration performance of two identical lists when using Python 3.6's zip() functions, Python's enumerate() function, using a manual counter (see count() function), using an index-list, and during a special scenario where the elements of one of the two lists (either foo or bar) may be used to index the other list. Their performances for printing and creating a new list, respectively, were investigated using the timeit() function where the number of repetitions used was 1000 times. One of the Python scripts that I had created to perform these investigations is given below. The sizes of the foo and bar lists had ranged from 10 to 1,000,000 elements.

Results:

  1. For printing purposes: The performances of all the considered approaches were observed to be approximately similar to the zip() function, after factoring an accuracy tolerance of +/-5%. An exception occurred when the list size was smaller than 100 elements. In such a scenario, the index-list method was slightly slower than the zip() function while the enumerate() function was ~9% faster. The other methods yielded similar performance to the zip() function.

    Print loop 1000 reps

  2. For creating lists: Two types of list creation approaches were explored: using the (a) list.append() method and (b) list comprehension. After factoring an accuracy tolerance of +/-5%, for both of these approaches, the zip() function was found to perform faster than the enumerate() function, than using a list-index, than using a manual counter. The performance gain by the zip() function in these comparisons can be 5% to 60% faster. Interestingly, using the element of foo to index bar can yield equivalent or faster performances (5% to 20%) than the zip() function.

    Creating List - 1000reps

Making sense of these results:

A programmer has to determine the amount of compute-time per operation that is meaningful or that is of significance.

For example, for printing purposes, if this time criterion is 1 second, i.e. 10**0 sec, then looking at the y-axis of the graph that is on the left at 1 sec and projecting it horizontally until it reaches the monomials curves, we see that lists sizes that are more than 144 elements will incur significant compute cost and significance to the programmer. That is, any performance gained by the approaches mentioned in this investigation for smaller list sizes will be insignificant to the programmer. The programmer will conclude that the performance of the zip() function to iterate print statements is similar to the other approaches.

Conclusion

Notable performance can be gained from using the zip() function to iterate through two lists in parallel during list creation. When iterating through two lists in parallel to print out the elements of the two lists, the zip() function will yield similar performance as the enumerate() function, as to using a manual counter variable, as to using an index-list, and as to during the special scenario where the elements of one of the two lists (either foo or bar) may be used to index the other list.

The Python3.6 Script that was used to investigate list creation.

import timeit
import matplotlib.pyplot as plt
import numpy as np


def test_zip( foo, bar ):
    store = []
    for f, b in zip(foo, bar):
        #print(f, b)
        store.append( (f, b) ) 

def test_enumerate( foo, bar ):
    store = []
    for n, f in enumerate( foo ):
        #print(f, bar[n])
        store.append( (f, bar[n]) ) 

def test_count( foo, bar ):
    store = []
    count = 0
    for f in foo:
        #print(f, bar[count])
        store.append( (f, bar[count]) )
        count += 1

def test_indices( foo, bar, indices ):
    store = []
    for i in indices:
        #print(foo[i], bar[i])
        store.append( (foo[i], bar[i]) )

def test_existing_list_indices( foo, bar ):
    store = []
    for f in foo:
        #print(f, bar[f])
        store.append( (f, bar[f]) )


list_sizes = [ 10, 100, 1000, 10000, 100000, 1000000 ]
tz = []
te = []
tc = []
ti = []
tii= []

tcz = []
tce = []
tci = []
tcii= []

for a in list_sizes:
    foo = [ i for i in range(a) ]
    bar = [ i for i in range(a) ]
    indices = [ i for i in range(a) ]
    reps = 1000

    tz.append( timeit.timeit( 'test_zip( foo, bar )',
                              'from __main__ import test_zip, foo, bar',
                              number=reps
                              )
               )
    te.append( timeit.timeit( 'test_enumerate( foo, bar )',
                              'from __main__ import test_enumerate, foo, bar',
                              number=reps
                              )
               )
    tc.append( timeit.timeit( 'test_count( foo, bar )',
                              'from __main__ import test_count, foo, bar',
                              number=reps
                              )
               )
    ti.append( timeit.timeit( 'test_indices( foo, bar, indices )',
                              'from __main__ import test_indices, foo, bar, indices',
                              number=reps
                              )
               )
    tii.append( timeit.timeit( 'test_existing_list_indices( foo, bar )',
                               'from __main__ import test_existing_list_indices, foo, bar',
                               number=reps
                               )
                )

    tcz.append( timeit.timeit( '[(f, b) for f, b in zip(foo, bar)]',
                               'from __main__ import foo, bar',
                               number=reps
                               )
                )
    tce.append( timeit.timeit( '[(f, bar[n]) for n, f in enumerate( foo )]',
                               'from __main__ import foo, bar',
                               number=reps
                               )
                )
    tci.append( timeit.timeit( '[(foo[i], bar[i]) for i in indices ]',
                               'from __main__ import foo, bar, indices',
                               number=reps
                               )
                )
    tcii.append( timeit.timeit( '[(f, bar[f]) for f in foo ]',
                                'from __main__ import foo, bar',
                                number=reps
                                )
                 )

print( f'te  = {te}' )
print( f'ti  = {ti}' )
print( f'tii = {tii}' )
print( f'tc  = {tc}' )
print( f'tz  = {tz}' )

print( f'tce  = {te}' )
print( f'tci  = {ti}' )
print( f'tcii = {tii}' )
print( f'tcz  = {tz}' )

fig, ax = plt.subplots( 2, 2 )
ax[0,0].plot( list_sizes, te, label='enumerate()', marker='.' )
ax[0,0].plot( list_sizes, ti, label='index-list', marker='.' )
ax[0,0].plot( list_sizes, tii, label='element of foo', marker='.' )
ax[0,0].plot( list_sizes, tc, label='count()', marker='.' )
ax[0,0].plot( list_sizes, tz, label='zip()', marker='.')
ax[0,0].set_xscale('log')
ax[0,0].set_yscale('log')
ax[0,0].set_xlabel('List Size')
ax[0,0].set_ylabel('Time (s)')
ax[0,0].legend()
ax[0,0].grid( b=True, which='major', axis='both')
ax[0,0].grid( b=True, which='minor', axis='both')

ax[0,1].plot( list_sizes, np.array(te)/np.array(tz), label='enumerate()', marker='.' )
ax[0,1].plot( list_sizes, np.array(ti)/np.array(tz), label='index-list', marker='.' )
ax[0,1].plot( list_sizes, np.array(tii)/np.array(tz), label='element of foo', marker='.' )
ax[0,1].plot( list_sizes, np.array(tc)/np.array(tz), label='count()', marker='.' )
ax[0,1].set_xscale('log')
ax[0,1].set_xlabel('List Size')
ax[0,1].set_ylabel('Performances ( vs zip() function )')
ax[0,1].legend()
ax[0,1].grid( b=True, which='major', axis='both')
ax[0,1].grid( b=True, which='minor', axis='both')

ax[1,0].plot( list_sizes, tce, label='list comprehension using enumerate()',  marker='.')
ax[1,0].plot( list_sizes, tci, label='list comprehension using index-list()',  marker='.')
ax[1,0].plot( list_sizes, tcii, label='list comprehension using element of foo',  marker='.')
ax[1,0].plot( list_sizes, tcz, label='list comprehension using zip()',  marker='.')
ax[1,0].set_xscale('log')
ax[1,0].set_yscale('log')
ax[1,0].set_xlabel('List Size')
ax[1,0].set_ylabel('Time (s)')
ax[1,0].legend()
ax[1,0].grid( b=True, which='major', axis='both')
ax[1,0].grid( b=True, which='minor', axis='both')

ax[1,1].plot( list_sizes, np.array(tce)/np.array(tcz), label='enumerate()', marker='.' )
ax[1,1].plot( list_sizes, np.array(tci)/np.array(tcz), label='index-list', marker='.' )
ax[1,1].plot( list_sizes, np.array(tcii)/np.array(tcz), label='element of foo', marker='.' )
ax[1,1].set_xscale('log')
ax[1,1].set_xlabel('List Size')
ax[1,1].set_ylabel('Performances ( vs zip() function )')
ax[1,1].legend()
ax[1,1].grid( b=True, which='major', axis='both')
ax[1,1].grid( b=True, which='minor', axis='both')

plt.show()

You should use 'zip' function. Here is an example how your own zip function can look like

def custom_zip(seq1, seq2):
    it1 = iter(seq1)
    it2 = iter(seq2)
    while True:
        yield next(it1), next(it2)

You want the zip function.

for (f,b) in zip(foo, bar):
    print "f: ", f ,"; b: ", b

Here's how to do it with list comprehension:

a = (1, 2, 3)
b = (4, 5, 6)
[print('f:', i, '; b', j) for i, j in zip(a, b)]

prints:

f: 1 ; b 4
f: 2 ; b 5
f: 3 ; b 6

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to list

Convert List to Pandas Dataframe Column Python find elements in one list that are not in the other Sorting a list with stream.sorted() in Java Python Loop: List Index Out of Range How to combine two lists in R How do I multiply each element in a list by a number? Save a list to a .txt file The most efficient way to remove first N elements in a list? TypeError: list indices must be integers or slices, not str Parse JSON String into List<string>

Examples related to for-loop

List append() in for loop Prime numbers between 1 to 100 in C Programming Language Get current index from foreach loop how to loop through each row of dataFrame in pyspark TypeScript for ... of with index / key? Is there a way in Pandas to use previous row value in dataframe.apply when previous value is also calculated in the apply? Python for and if on one line R for loop skip to next iteration ifelse How to append rows in a pandas dataframe in a for loop? What is the difference between ( for... in ) and ( for... of ) statements?

Examples related to iterator

Iterating over Typescript Map Update row values where certain condition is met in pandas How to iterate (keys, values) in JavaScript? How to convert an iterator to a stream? How to iterate through a list of objects in C++ How to avoid "ConcurrentModificationException" while removing elements from `ArrayList` while iterating it? How to read one single line of csv data in Python? 'numpy.float64' object is not iterable Python list iterator behavior and next(iterator) python JSON only get keys in first level