[c] Try catch statements in C

I was thinking today about the try/catch blocks existent in another languages. Googled for a while this but with no result. From what I know, there is not such a thing as try/catch in C. However, is there a way to "simulate" them?
Sure, there is assert and other tricks but nothing like try/catch, that also catch the raised exception. Thank you

This question is related to c

The answer is


In C, you can "simulate" exceptions along with automatic "object reclamation" through manual use of if + goto for explicit error handling.

I often write C code like the following (boiled down to highlight error handling):

#include <assert.h>

typedef int errcode;

errcode init_or_fail( foo *f, goo *g, poo *p, loo *l )
{
    errcode ret = 0;

    if ( ( ret = foo_init( f ) ) )
        goto FAIL;

    if ( ( ret = goo_init( g ) ) )
        goto FAIL_F;

    if ( ( ret = poo_init( p ) ) )
        goto FAIL_G;

    if ( ( ret = loo_init( l ) ) )
        goto FAIL_P;

    assert( 0 == ret );
    goto END;

    /* error handling and return */

    /* Note that we finalize in opposite order of initialization because we are unwinding a *STACK* of initialized objects */

FAIL_P:
    poo_fini( p );

FAIL_G:
    goo_fini( g );

FAIL_F:
    foo_fini( f );

FAIL:
    assert( 0 != ret );

END:
    return ret;        
}

This is completely standard ANSI C, separates the error handling away from your mainline code, allows for (manual) stack unwinding of initialized objects much like C++ does, and it is completely obvious what is happening here. Because you are explicitly testing for failure at each point it does make it easier to insert specific logging or error handling at each place an error can occur.

If you don't mind a little macro magic, then you can make this more concise while doing other things like logging errors with stack traces. For example:

#include <assert.h>
#include <stdio.h>
#include <string.h>

#define TRY( X, LABEL ) do { if ( ( X ) ) { fprintf( stderr, "%s:%d: Statement '" #X "' failed! %d, %s\n", __FILE__, __LINE__, ret, strerror( ret ) ); goto LABEL; } while ( 0 )

typedef int errcode;

errcode init_or_fail( foo *f, goo *g, poo *p, loo *l )
{
    errcode ret = 0;

    TRY( ret = foo_init( f ), FAIL );
    TRY( ret = goo_init( g ), FAIL_F );
    TRY( ret = poo_init( p ), FAIL_G );
    TRY( ret = loo_init( l ), FAIL_P );

    assert( 0 == ret );
    goto END;

    /* error handling and return */

FAIL_P:
    poo_fini( p );

FAIL_G:
    goo_fini( g );

FAIL_F:
    foo_fini( f );

FAIL:
    assert( 0 != ret );

END:
    return ret;        
}

Of course, this isn't as elegant as C++ exceptions + destructors. For example, nesting multiple error handling stacks within one function this way isn't very clean. Instead, you'd probably want to break those out into self contained sub functions that similarly handle errors, initialize + finalize explicitly like this.

This also only works within a single function and won't keep jumping up the stack unless higher level callers implement similar explicit error handling logic, whereas a C++ exception will just keep jumping up the stack until it finds an appropriate handler. Nor does it allow you to throw an arbitrary type, but instead only an error code.

Systematically coding this way (i.e. - with a single entry and single exit point) also makes it very easy to insert pre and post ("finally") logic that will execute no matter what. You just put your "finally" logic after the END label.


This is another way to do error handling in C which is more performant than using setjmp/longjmp. Unfortunately, it will not work with MSVC but if using only GCC/Clang is an option, then you might consider it. Specifically, it uses the "label as value" extension, which allows you to take the address of a label, store it in a value and and jump to it unconditionally. I'll present it using an example:

GameEngine *CreateGameEngine(GameEngineParams const *params)
{
    /* Declare an error handler variable. This will hold the address
       to jump to if an error occurs to cleanup pending resources.
       Initialize it to the err label which simply returns an
       error value (NULL in this example). The && operator resolves to
       the address of the label err */
    void *eh = &&err;

    /* Try the allocation */
    GameEngine *engine = malloc(sizeof *engine);
    if (!engine)
        goto *eh; /* this is essentially your "throw" */

    /* Now make sure that if we throw from this point on, the memory
       gets deallocated. As a convention you could name the label "undo_"
       followed by the operation to rollback. */
    eh = &&undo_malloc;

    /* Now carry on with the initialization. */
    engine->window = OpenWindow(...);
    if (!engine->window)
        goto *eh;   /* The neat trick about using approach is that you don't
                       need to remember what "undo" label to go to in code.
                       Simply go to *eh. */

    eh = &&undo_window_open;

    /* etc */

    /* Everything went well, just return the device. */
    return device;

    /* After the return, insert your cleanup code in reverse order. */
undo_window_open: CloseWindow(engine->window);
undo_malloc: free(engine);
err: return NULL;
}

If you so wish, you could refactor common code in defines, effectively implementing your own error-handling system.

/* Put at the beginning of a function that may fail. */
#define declthrows void *_eh = &&err

/* Cleans up resources and returns error result. */
#define throw goto *_eh

/* Sets a new undo checkpoint. */
#define undo(label) _eh = &&undo_##label

/* Throws if [condition] evaluates to false. */
#define check(condition) if (!(condition)) throw

/* Throws if [condition] evaluates to false. Then sets a new undo checkpoint. */
#define checkpoint(label, condition) { check(condition); undo(label); }

Then the example becomes

GameEngine *CreateGameEngine(GameEngineParams const *params)
{
    declthrows;

    /* Try the allocation */
    GameEngine *engine = malloc(sizeof *engine);
    checkpoint(malloc, engine);

    /* Now carry on with the initialization. */
    engine->window = OpenWindow(...);
    checkpoint(window_open, engine->window);

    /* etc */

    /* Everything went well, just return the device. */
    return device;

    /* After the return, insert your cleanup code in reverse order. */
undo_window_open: CloseWindow(engine->window);
undo_malloc: free(engine);
err: return NULL;
}

Warning: the following is not very nice but it does the job.

#include <stdio.h>
#include <stdlib.h>

typedef struct {
    unsigned int  id;
    char         *name;
    char         *msg;
} error;

#define _printerr(e, s, ...) fprintf(stderr, "\033[1m\033[37m" "%s:%d: " "\033[1m\033[31m" e ":" "\033[1m\033[37m" " ‘%s_error’ " "\033[0m" s "\n", __FILE__, __LINE__, (*__err)->name, ##__VA_ARGS__)
#define printerr(s, ...) _printerr("error", s, ##__VA_ARGS__)
#define printuncaughterr() _printerr("uncaught error", "%s", (*__err)->msg)

#define _errordef(n, _id) \
error* new_##n##_error_msg(char* msg) { \
    error* self = malloc(sizeof(error)); \
    self->id = _id; \
    self->name = #n; \
    self->msg = msg; \
    return self; \
} \
error* new_##n##_error() { return new_##n##_error_msg(""); }

#define errordef(n) _errordef(n, __COUNTER__ +1)

#define try(try_block, err, err_name, catch_block) { \
    error * err_name = NULL; \
    error ** __err = & err_name; \
    void __try_fn() try_block \
    __try_fn(); \
    void __catch_fn() { \
        if (err_name == NULL) return; \
        unsigned int __##err_name##_id = new_##err##_error()->id; \
        if (__##err_name##_id != 0 && __##err_name##_id != err_name->id) \
            printuncaughterr(); \
        else if (__##err_name##_id != 0 || __##err_name##_id != err_name->id) \
            catch_block \
    } \
    __catch_fn(); \
}

#define throw(e) { *__err = e; return; }

_errordef(any, 0)

Usage:

errordef(my_err1)
errordef(my_err2)

try ({
    printf("Helloo\n");
    throw(new_my_err1_error_msg("hiiiii!"));
    printf("This will not be printed!\n");
}, /*catch*/ any, e, {
    printf("My lovely error: %s %s\n", e->name, e->msg);
})

printf("\n");

try ({
    printf("Helloo\n");
    throw(new_my_err2_error_msg("my msg!"));
    printf("This will not be printed!\n");
}, /*catch*/ my_err2, e, {
    printerr("%s", e->msg);
})

printf("\n");

try ({
    printf("Helloo\n");
    throw(new_my_err1_error());
    printf("This will not be printed!\n");
}, /*catch*/ my_err2, e, {
    printf("Catch %s if you can!\n", e->name);
})

Output:

Helloo
My lovely error: my_err1 hiiiii!

Helloo
/home/naheel/Desktop/aa.c:28: error: ‘my_err2_error’ my msg!

Helloo
/home/naheel/Desktop/aa.c:38: uncaught error: ‘my_err1_error’ 

Keep on mind that this is using nested functions and __COUNTER__. You'll be on the safe side if you're using gcc.


Ok, I couldn't resist replying to this. Let me first say I don't think it's a good idea to simulate this in C as it really is a foreign concept to C.

We can use abuse the preprocessor and local stack variables to give use a limited version of C++ try/throw/catch.

Version 1 (local scope throws)

#include <stdbool.h>

#define try bool __HadError=false;
#define catch(x) ExitJmp:if(__HadError)
#define throw(x) __HadError=true;goto ExitJmp;

Version 1 is a local throw only (can't leave the function's scope). It does rely on C99's ability to declare variables in code (it should work in C89 if the try is first thing in the function).

This function just makes a local var so it knows if there was an error and uses a goto to jump to the catch block.

For example:

#include <stdio.h>
#include <stdbool.h>

#define try bool __HadError=false;
#define catch(x) ExitJmp:if(__HadError)
#define throw(x) __HadError=true;goto ExitJmp;

int main(void)
{
    try
    {
        printf("One\n");
        throw();
        printf("Two\n");
    }
    catch(...)
    {
        printf("Error\n");
    }
    return 0;
}

This works out to something like:

int main(void)
{
    bool HadError=false;
    {
        printf("One\n");
        HadError=true;
        goto ExitJmp;
        printf("Two\n");
    }
ExitJmp:
    if(HadError)
    {
        printf("Error\n");
    }
    return 0;
}

Version 2 (scope jumping)

#include <stdbool.h>
#include <setjmp.h>

jmp_buf *g__ActiveBuf;

#define try jmp_buf __LocalJmpBuff;jmp_buf *__OldActiveBuf=g__ActiveBuf;bool __WasThrown=false;g__ActiveBuf=&__LocalJmpBuff;if(setjmp(__LocalJmpBuff)){__WasThrown=true;}else
#define catch(x) g__ActiveBuf=__OldActiveBuf;if(__WasThrown)
#define throw(x) longjmp(*g__ActiveBuf,1);

Version 2 is a lot more complex but basically works the same way. It uses a long jump out of the current function to the try block. The try block then uses an if/else to skip the code block to the catch block which check the local variable to see if it should catch.

The example expanded again:

jmp_buf *g_ActiveBuf;

int main(void)
{
    jmp_buf LocalJmpBuff;
    jmp_buf *OldActiveBuf=g_ActiveBuf;
    bool WasThrown=false;
    g_ActiveBuf=&LocalJmpBuff;

    if(setjmp(LocalJmpBuff))
    {
        WasThrown=true;
    }
    else
    {
        printf("One\n");
        longjmp(*g_ActiveBuf,1);
        printf("Two\n");
    }
    g_ActiveBuf=OldActiveBuf;
    if(WasThrown)
    {
        printf("Error\n");
    }
    return 0;
}

This uses a global pointer so the longjmp() knows what try was last run. We are using abusing the stack so child functions can also have a try/catch block.

Using this code has a number of down sides (but is a fun mental exercise):

  • It will not free allocated memory as there are no deconstructors being called.
  • You can't have more than 1 try/catch in a scope (no nesting)
  • You can't actually throw exceptions or other data like in C++
  • Not thread safe at all
  • You are setting up other programmers for failure because they will likely not notice the hack and try using them like C++ try/catch blocks.

In C99, you can use setjmp/longjmp for non-local control flow.

Within a single scope, the generic, structured coding pattern for C in the presence of multiple resource allocations and multiple exits uses goto, like in this example. This is similar to how C++ implements destructor calls of automatic objects under the hood, and if you stick to this diligently, it should allow you for a certain degree of cleanness even in complex functions.


A quick google search yields kludgey solutions such as this that use setjmp/longjmp as others have mentioned. Nothing as straightforward and elegant as C++/Java's try/catch. I'm rather partial to Ada's exception handling myself.

Check everything with if statements :)


This can be done with setjmp/longjmp in C. P99 has a quite comfortable toolset for this that also is consistent with the new thread model of C11.


Redis use goto to simulate try/catch, IMHO it is very clean and elegant:

/* Save the DB on disk. Return REDIS_ERR on error, REDIS_OK on success. */
int rdbSave(char *filename) {
    char tmpfile[256];
    FILE *fp;
    rio rdb;
    int error = 0;

    snprintf(tmpfile,256,"temp-%d.rdb", (int) getpid());
    fp = fopen(tmpfile,"w");
    if (!fp) {
        redisLog(REDIS_WARNING, "Failed opening .rdb for saving: %s",
            strerror(errno));
        return REDIS_ERR;
    }

    rioInitWithFile(&rdb,fp);
    if (rdbSaveRio(&rdb,&error) == REDIS_ERR) {
        errno = error;
        goto werr;
    }

    /* Make sure data will not remain on the OS's output buffers */
    if (fflush(fp) == EOF) goto werr;
    if (fsync(fileno(fp)) == -1) goto werr;
    if (fclose(fp) == EOF) goto werr;

    /* Use RENAME to make sure the DB file is changed atomically only
     * if the generate DB file is ok. */
    if (rename(tmpfile,filename) == -1) {
        redisLog(REDIS_WARNING,"Error moving temp DB file on the final destination: %s", strerror(errno));
        unlink(tmpfile);
        return REDIS_ERR;
    }
    redisLog(REDIS_NOTICE,"DB saved on disk");
    server.dirty = 0;
    server.lastsave = time(NULL);
    server.lastbgsave_status = REDIS_OK;
    return REDIS_OK;

werr:
    fclose(fp);
    unlink(tmpfile);
    redisLog(REDIS_WARNING,"Write error saving DB on disk: %s", strerror(errno));
    return REDIS_ERR;
}

You use goto in C for similar error handling situations.
That is the closest equivalent of exceptions you can get in C.


If you're using C with Win32, you can leverage its Structured Exception Handling (SEH) to simulate try/catch.

If you're using C in platforms that don't support setjmp() and longjmp(), have a look at this Exception Handling of pjsip library, it does provide its own implementation


Perhaps not a major language (unfortunately), but in APL, theres the ?EA operation (stand for Execute Alternate).

Usage: 'Y' ?EA 'X' where X and Y are either code snippets supplied as strings or function names.

If X runs into an error, Y (usually error-handling) will be executed instead.


While some of the other answers have covered the simple cases using setjmp and longjmp, in a real application there's two concerns that really matter.

  1. Nesting of try/catch blocks. Using a single global variable for your jmp_buf will make these not work.
  2. Threading. A single global variable for you jmp_buf will cause all kinds of pain in this situation.

The solution to these is to maintain a thread-local stack of jmp_buf that get updated as you go. (I think this is what lua uses internally).

So instead of this (from JaredPar's awesome answer)

static jmp_buf s_jumpBuffer;

void Example() { 
  if (setjmp(s_jumpBuffer)) {
    // The longjmp was executed and returned control here
    printf("Exception happened\n");
  } else {
    // Normal code execution starts here
    Test();
  }
}

void Test() {
  // Rough equivalent of `throw`
  longjump(s_jumpBuffer, 42);
}

You'd use something like:

#define MAX_EXCEPTION_DEPTH 10;
struct exception_state {
  jmp_buf s_jumpBuffer[MAX_EXCEPTION_DEPTH];
  int current_depth;
};

int try_point(struct exception_state * state) {
  if(current_depth==MAX_EXCEPTION_DEPTH) {
     abort();
  }
  int ok = setjmp(state->jumpBuffer[state->current_depth]);
  if(ok) {
    state->current_depth++;
  } else {
    //We've had an exception update the stack.
    state->current_depth--;
  }
  return ok;
}

void throw_exception(struct exception_state * state) {
  longjump(state->current_depth-1,1);
}

void catch_point(struct exception_state * state) {
    state->current_depth--;
}

void end_try_point(struct exception_state * state) {
    state->current_depth--;
}

__thread struct exception_state g_exception_state; 

void Example() { 
  if (try_point(&g_exception_state)) {
    catch_point(&g_exception_state);
    printf("Exception happened\n");
  } else {
    // Normal code execution starts here
    Test();
    end_try_point(&g_exception_state);
  }
}

void Test() {
  // Rough equivalent of `throw`
  throw_exception(g_exception_state);
}

Again a more realistic version of this would include some way to store error information into the exception_state, better handling of MAX_EXCEPTION_DEPTH (maybe using realloc to grow the buffer, or something like that).

DISCLAIMER: The above code was written without any testing whatsoever. It is purely so you get an idea of how to structure things. Different systems and different compilers will need to implement the thread local storage differently. The code probably contains both compile errors and logic errors - so while you're free to use it as you choose, TEST it before using it ;)