First we generate a cdf[x] which is
The probability that a point is less than distance x from the centre of the circle. Assume the circle has a radius of R.
obviously if x is zero then cdf[0] = 0
obviously if x is R then the cdf[R] = 1
obviously if x = r then the cdf[r] = (Pi r^2)/(Pi R^2)
This is because each "small area" on the circle has the same probability of being picked, So the probability is proportionally to the area in question. And the area given a distance x from the centre of the circle is Pi r^2
so cdf[x] = x^2/R^2 because the Pi cancel each other out
we have cdf[x]=x^2/R^2 where x goes from 0 to R
So we solve for x
R^2 cdf[x] = x^2
x = R Sqrt[ cdf[x] ]
We can now replace cdf with a random number from 0 to 1
x = R Sqrt[ RandomReal[{0,1}] ]
Finally
r = R Sqrt[ RandomReal[{0,1}] ];
theta = 360 deg * RandomReal[{0,1}];
{r,theta}
we get the polar coordinates {0.601168 R, 311.915 deg}