What you are looking for is called a spherical covering. The spherical covering problem is very hard and solutions are unknown except for small numbers of points. One thing that is known for sure is that given n points on a sphere, there always exist two points of distance d = (4-csc^2(\pi n/6(n-2)))^(1/2)
or closer.
If you want a probabilistic method for generating points uniformly distributed on a sphere, it's easy: generate points in space uniformly by Gaussian distribution (it's built into Java, not hard to find the code for other languages). So in 3-dimensional space, you need something like
Random r = new Random();
double[] p = { r.nextGaussian(), r.nextGaussian(), r.nextGaussian() };
Then project the point onto the sphere by normalizing its distance from the origin
double norm = Math.sqrt( (p[0])^2 + (p[1])^2 + (p[2])^2 );
double[] sphereRandomPoint = { p[0]/norm, p[1]/norm, p[2]/norm };
The Gaussian distribution in n dimensions is spherically symmetric so the projection onto the sphere is uniform.
Of course, there's no guarantee that the distance between any two points in a collection of uniformly generated points will be bounded below, so you can use rejection to enforce any such conditions that you might have: probably it's best to generate the whole collection and then reject the whole collection if necessary. (Or use "early rejection" to reject the whole collection you've generated so far; just don't keep some points and drop others.) You can use the formula for d
given above, minus some slack, to determine the min distance between points below which you will reject a set of points. You'll have to calculate n choose 2 distances, and the probability of rejection will depend on the slack; it's hard to say how, so run a simulation to get a feel for the relevant statistics.