I didn't find an intuitive explanation on the web, so now that I worked it out, here's my solution. This is for infinite lines (what I needed), not segments.
Some terms you might remember:
A line is defined as y = mx + b OR y = slope * x + y-intercept
Slope = rise over run = dy / dx = height / distance
Y-intercept is where the line crosses the Y axis, where X = 0
Given those definitions, here are some functions:
def slope(P1, P2):
# dy/dx
# (y2 - y1) / (x2 - x1)
return(P2[1] - P1[1]) / (P2[0] - P1[0])
def y_intercept(P1, slope):
# y = mx + b
# b = y - mx
# b = P1[1] - slope * P1[0]
return P1[1] - slope * P1[0]
def line_intersect(m1, b1, m2, b2):
if m1 == m2:
print ("These lines are parallel!!!")
return None
# y = mx + b
# Set both lines equal to find the intersection point in the x direction
# m1 * x + b1 = m2 * x + b2
# m1 * x - m2 * x = b2 - b1
# x * (m1 - m2) = b2 - b1
# x = (b2 - b1) / (m1 - m2)
x = (b2 - b1) / (m1 - m2)
# Now solve for y -- use either line, because they are equal here
# y = mx + b
y = m1 * x + b1
return x,y
Here's a simple test between two (infinite) lines:
A1 = [1,1]
A2 = [3,3]
B1 = [1,3]
B2 = [3,1]
slope_A = slope(A1, A2)
slope_B = slope(B1, B2)
y_int_A = y_intercept(A1, slope_A)
y_int_B = y_intercept(B1, slope_B)
print(line_intersect(slope_A, y_int_A, slope_B, y_int_B))
Output:
(2.0, 2.0)