[c#] Comparing two byte arrays in .NET

How can I do this fast?

Sure I can do this:

static bool ByteArrayCompare(byte[] a1, byte[] a2)
{
    if (a1.Length != a2.Length)
        return false;

    for (int i=0; i<a1.Length; i++)
        if (a1[i]!=a2[i])
            return false;

    return true;
}

But I'm looking for either a BCL function or some highly optimized proven way to do this.

java.util.Arrays.equals((sbyte[])(Array)a1, (sbyte[])(Array)a2);

works nicely, but it doesn't look like that would work for x64.

Note my super-fast answer here.

This question is related to c# .net arrays performance j#

The answer is


.NET 3.5 and newer have a new public type, System.Data.Linq.Binary that encapsulates byte[]. It implements IEquatable<Binary> that (in effect) compares two byte arrays. Note that System.Data.Linq.Binary also has implicit conversion operator from byte[].

MSDN documentation:System.Data.Linq.Binary

Reflector decompile of the Equals method:

private bool EqualsTo(Binary binary)
{
    if (this != binary)
    {
        if (binary == null)
        {
            return false;
        }
        if (this.bytes.Length != binary.bytes.Length)
        {
            return false;
        }
        if (this.hashCode != binary.hashCode)
        {
            return false;
        }
        int index = 0;
        int length = this.bytes.Length;
        while (index < length)
        {
            if (this.bytes[index] != binary.bytes[index])
            {
                return false;
            }
            index++;
        }
    }
    return true;
}

Interesting twist is that they only proceed to byte-by-byte comparison loop if hashes of the two Binary objects are the same. This, however, comes at the cost of computing the hash in constructor of Binary objects (by traversing the array with for loop :-) ).

The above implementation means that in the worst case you may have to traverse the arrays three times: first to compute hash of array1, then to compute hash of array2 and finally (because this is the worst case scenario, lengths and hashes equal) to compare bytes in array1 with bytes in array 2.

Overall, even though System.Data.Linq.Binary is built into BCL, I don't think it is the fastest way to compare two byte arrays :-|.


I would use unsafe code and run the for loop comparing Int32 pointers.

Maybe you should also consider checking the arrays to be non-null.


I did some measurements using attached program .net 4.7 release build without the debugger attached. I think people have been using the wrong metric since what you are about if you care about speed here is how long it takes to figure out if two byte arrays are equal. i.e. throughput in bytes.

StructuralComparison :              4.6 MiB/s
for                  :            274.5 MiB/s
ToUInt32             :            263.6 MiB/s
ToUInt64             :            474.9 MiB/s
memcmp               :           8500.8 MiB/s

As you can see, there's no better way than memcmp and it's orders of magnitude faster. A simple for loop is the second best option. And it still boggles my mind why Microsoft cannot simply include a Buffer.Compare method.

[Program.cs]:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;

namespace memcmp
{
    class Program
    {
        static byte[] TestVector(int size)
        {
            var data = new byte[size];
            using (var rng = new System.Security.Cryptography.RNGCryptoServiceProvider())
            {
                rng.GetBytes(data);
            }
            return data;
        }

        static TimeSpan Measure(string testCase, TimeSpan offset, Action action, bool ignore = false)
        {
            var t = Stopwatch.StartNew();
            var n = 0L;
            while (t.Elapsed < TimeSpan.FromSeconds(10))
            {
                action();
                n++;
            }
            var elapsed = t.Elapsed - offset;
            if (!ignore)
            {
                Console.WriteLine($"{testCase,-16} : {n / elapsed.TotalSeconds,16:0.0} MiB/s");
            }
            return elapsed;
        }

        [DllImport("msvcrt.dll", CallingConvention = CallingConvention.Cdecl)]
        static extern int memcmp(byte[] b1, byte[] b2, long count);

        static void Main(string[] args)
        {
            // how quickly can we establish if two sequences of bytes are equal?

            // note that we are testing the speed of different comparsion methods

            var a = TestVector(1024 * 1024); // 1 MiB
            var b = (byte[])a.Clone();

            // was meant to offset the overhead of everything but copying but my attempt was a horrible mistake... should have reacted sooner due to the initially ridiculous throughput values...
            // Measure("offset", new TimeSpan(), () => { return; }, ignore: true);
            var offset = TimeZone.Zero

            Measure("StructuralComparison", offset, () =>
            {
                StructuralComparisons.StructuralEqualityComparer.Equals(a, b);
            });

            Measure("for", offset, () =>
            {
                for (int i = 0; i < a.Length; i++)
                {
                    if (a[i] != b[i]) break;
                }
            });

            Measure("ToUInt32", offset, () =>
            {
                for (int i = 0; i < a.Length; i += 4)
                {
                    if (BitConverter.ToUInt32(a, i) != BitConverter.ToUInt32(b, i)) break;
                }
            });

            Measure("ToUInt64", offset, () =>
            {
                for (int i = 0; i < a.Length; i += 8)
                {
                    if (BitConverter.ToUInt64(a, i) != BitConverter.ToUInt64(b, i)) break;
                }
            });

            Measure("memcmp", offset, () =>
            {
                memcmp(a, b, a.Length);
            });
        }
    }
}

If you look at how .NET does string.Equals, you see that it uses a private method called EqualsHelper which has an "unsafe" pointer implementation. .NET Reflector is your friend to see how things are done internally.

This can be used as a template for byte array comparison which I did an implementation on in blog post Fast byte array comparison in C#. I also did some rudimentary benchmarks to see when a safe implementation is faster than the unsafe.

That said, unless you really need killer performance, I'd go for a simple fr loop comparison.


Use SequenceEquals for this to comparison.


P/Invoke powers activate!

[DllImport("msvcrt.dll", CallingConvention=CallingConvention.Cdecl)]
static extern int memcmp(byte[] b1, byte[] b2, long count);

static bool ByteArrayCompare(byte[] b1, byte[] b2)
{
    // Validate buffers are the same length.
    // This also ensures that the count does not exceed the length of either buffer.  
    return b1.Length == b2.Length && memcmp(b1, b2, b1.Length) == 0;
}

For comparing short byte arrays the following is an interesting hack:

if(myByteArray1.Length != myByteArray2.Length) return false;
if(myByteArray1.Length == 8)
   return BitConverter.ToInt64(myByteArray1, 0) == BitConverter.ToInt64(myByteArray2, 0); 
else if(myByteArray.Length == 4)
   return BitConverter.ToInt32(myByteArray2, 0) == BitConverter.ToInt32(myByteArray2, 0); 

Then I would probably fall out to the solution listed in the question.

It'd be interesting to do a performance analysis of this code.


If you are not opposed to doing it, you can import the J# assembly "vjslib.dll" and use its Arrays.equals(byte[], byte[]) method...

Don't blame me if someone laughs at you though...


EDIT: For what little it is worth, I used Reflector to disassemble the code for that, and here is what it looks like:

public static bool equals(sbyte[] a1, sbyte[] a2)
{
  if (a1 == a2)
  {
    return true;
  }
  if ((a1 != null) && (a2 != null))
  {
    if (a1.Length != a2.Length)
    {
      return false;
    }
    for (int i = 0; i < a1.Length; i++)
    {
      if (a1[i] != a2[i])
      {
        return false;
      }
    }
    return true;
  }
  return false;
}

I settled on a solution inspired by the EqualBytesLongUnrolled method posted by ArekBulski with an additional optimization. In my instance, array differences in arrays tend to be near the tail of the arrays. In testing, I found that when this is the case for large arrays, being able to compare array elements in reverse order gives this solution a huge performance gain over the memcmp based solution. Here is that solution:

public enum CompareDirection { Forward, Backward }

private static unsafe bool UnsafeEquals(byte[] a, byte[] b, CompareDirection direction = CompareDirection.Forward)
{
    // returns when a and b are same array or both null
    if (a == b) return true;

    // if either is null or different lengths, can't be equal
    if (a == null || b == null || a.Length != b.Length)
        return false;

    const int UNROLLED = 16;                // count of longs 'unrolled' in optimization
    int size = sizeof(long) * UNROLLED;     // 128 bytes (min size for 'unrolled' optimization)
    int len = a.Length;
    int n = len / size;         // count of full 128 byte segments
    int r = len % size;         // count of remaining 'unoptimized' bytes

    // pin the arrays and access them via pointers
    fixed (byte* pb_a = a, pb_b = b)
    {
        if (r > 0 && direction == CompareDirection.Backward)
        {
            byte* pa = pb_a + len - 1;
            byte* pb = pb_b + len - 1;
            byte* phead = pb_a + len - r;
            while(pa >= phead)
            {
                if (*pa != *pb) return false;
                pa--;
                pb--;
            }
        }

        if (n > 0)
        {
            int nOffset = n * size;
            if (direction == CompareDirection.Forward)
            {
                long* pa = (long*)pb_a;
                long* pb = (long*)pb_b;
                long* ptail = (long*)(pb_a + nOffset);
                while (pa < ptail)
                {
                    if (*(pa + 0) != *(pb + 0) || *(pa + 1) != *(pb + 1) ||
                        *(pa + 2) != *(pb + 2) || *(pa + 3) != *(pb + 3) ||
                        *(pa + 4) != *(pb + 4) || *(pa + 5) != *(pb + 5) ||
                        *(pa + 6) != *(pb + 6) || *(pa + 7) != *(pb + 7) ||
                        *(pa + 8) != *(pb + 8) || *(pa + 9) != *(pb + 9) ||
                        *(pa + 10) != *(pb + 10) || *(pa + 11) != *(pb + 11) ||
                        *(pa + 12) != *(pb + 12) || *(pa + 13) != *(pb + 13) ||
                        *(pa + 14) != *(pb + 14) || *(pa + 15) != *(pb + 15)
                    )
                    {
                        return false;
                    }
                    pa += UNROLLED;
                    pb += UNROLLED;
                }
            }
            else
            {
                long* pa = (long*)(pb_a + nOffset);
                long* pb = (long*)(pb_b + nOffset);
                long* phead = (long*)pb_a;
                while (phead < pa)
                {
                    if (*(pa - 1) != *(pb - 1) || *(pa - 2) != *(pb - 2) ||
                        *(pa - 3) != *(pb - 3) || *(pa - 4) != *(pb - 4) ||
                        *(pa - 5) != *(pb - 5) || *(pa - 6) != *(pb - 6) ||
                        *(pa - 7) != *(pb - 7) || *(pa - 8) != *(pb - 8) ||
                        *(pa - 9) != *(pb - 9) || *(pa - 10) != *(pb - 10) ||
                        *(pa - 11) != *(pb - 11) || *(pa - 12) != *(pb - 12) ||
                        *(pa - 13) != *(pb - 13) || *(pa - 14) != *(pb - 14) ||
                        *(pa - 15) != *(pb - 15) || *(pa - 16) != *(pb - 16)
                    )
                    {
                        return false;
                    }
                    pa -= UNROLLED;
                    pb -= UNROLLED;
                }
            }
        }

        if (r > 0 && direction == CompareDirection.Forward)
        {
            byte* pa = pb_a + len - r;
            byte* pb = pb_b + len - r;
            byte* ptail = pb_a + len;
            while(pa < ptail)
            {
                if (*pa != *pb) return false;
                pa++;
                pb++;
            }
        }
    }

    return true;
}

For those of you that care about order (i.e. want your memcmp to return an int like it should instead of nothing), .NET Core 3.0 (and presumably .NET Standard 2.1 aka .NET 5.0) will include a Span.SequenceCompareTo(...) extension method (plus a Span.SequenceEqualTo) that can be used to compare two ReadOnlySpan<T> instances (where T: IComparable<T>).

In the original GitHub proposal, the discussion included approach comparisons with jump table calculations, reading a byte[] as long[], SIMD usage, and p/invoke to the CLR implementation's memcmp.

Going forward, this should be your go-to method for comparing byte arrays or byte ranges (as should using Span<byte> instead of byte[] for your .NET Standard 2.1 APIs), and it is sufficiently fast enough that you should no longer care about optimizing it (and no, despite the similarities in name it does not perform as abysmally as the horrid Enumerable.SequenceEqual).

#if NETCOREAPP3_0
// Using the platform-native Span<T>.SequenceEqual<T>(..)
public static int Compare(byte[] range1, int offset1, byte[] range2, int offset2, int count)
{
    var span1 = range1.AsSpan(offset1, count);
    var span2 = range2.AsSpan(offset2, count);

    return span1.SequenceCompareTo(span2);
    // or, if you don't care about ordering
    // return span1.SequenceEqual(span2);
}
#else
// The most basic implementation, in platform-agnostic, safe C#
public static bool Compare(byte[] range1, int offset1, byte[] range2, int offset2, int count)
{
    // Working backwards lets the compiler optimize away bound checking after the first loop
    for (int i = count - 1; i >= 0; --i)
    {
        if (range1[offset1 + i] != range2[offset2 + i])
        {
            return false;
        }
    }

    return true;
}
#endif

I have not seen many linq solutions here.

I am not sure of the performance implications, however I generally stick to linq as rule of thumb and then optimize later if necessary.

public bool CompareTwoArrays(byte[] array1, byte[] array2)
 {
   return !array1.Where((t, i) => t != array2[i]).Any();
 }

Please do note this only works if they are the same size arrays. an extension could look like so

public bool CompareTwoArrays(byte[] array1, byte[] array2)
 {
   if (array1.Length != array2.Length) return false;
   return !array1.Where((t, i) => t != array2[i]).Any();
 }

 using System.Linq; //SequenceEqual

 byte[] ByteArray1 = null;
 byte[] ByteArray2 = null;

 ByteArray1 = MyFunct1();
 ByteArray2 = MyFunct2();

 if (ByteArray1.SequenceEqual<byte>(ByteArray2) == true)
 {
    MessageBox.Show("Match");
 }
 else
 {
   MessageBox.Show("Don't match");
 }

Sorry, if you're looking for a managed way you're already doing it correctly and to my knowledge there's no built in method in the BCL for doing this.

You should add some initial null checks and then just reuse it as if it where in BCL.


I developed a method that slightly beats memcmp() (plinth's answer) and very slighly beats EqualBytesLongUnrolled() (Arek Bulski's answer) on my PC. Basically, it unrolls the loop by 4 instead of 8.

Update 30 Mar. 2019:

Starting in .NET core 3.0, we have SIMD support!

This solution is fastest by a considerable margin on my PC:

#if NETCOREAPP3_0
using System.Runtime.Intrinsics.X86;
#endif
…

public static unsafe bool Compare(byte[] arr0, byte[] arr1)
{
    if (arr0 == arr1)
    {
        return true;
    }
    if (arr0 == null || arr1 == null)
    {
        return false;
    }
    if (arr0.Length != arr1.Length)
    {
        return false;
    }
    if (arr0.Length == 0)
    {
        return true;
    }
    fixed (byte* b0 = arr0, b1 = arr1)
    {
#if NETCOREAPP3_0
        if (Avx2.IsSupported)
        {
            return Compare256(b0, b1, arr0.Length);
        }
        else if (Sse2.IsSupported)
        {
            return Compare128(b0, b1, arr0.Length);
        }
        else
#endif
        {
            return Compare64(b0, b1, arr0.Length);
        }
    }
}
#if NETCOREAPP3_0
public static unsafe bool Compare256(byte* b0, byte* b1, int length)
{
    byte* lastAddr = b0 + length;
    byte* lastAddrMinus128 = lastAddr - 128;
    const int mask = -1;
    while (b0 < lastAddrMinus128) // unroll the loop so that we are comparing 128 bytes at a time.
    {
        if (Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(b0), Avx.LoadVector256(b1))) != mask)
        {
            return false;
        }
        if (Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(b0 + 32), Avx.LoadVector256(b1 + 32))) != mask)
        {
            return false;
        }
        if (Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(b0 + 64), Avx.LoadVector256(b1 + 64))) != mask)
        {
            return false;
        }
        if (Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(b0 + 96), Avx.LoadVector256(b1 + 96))) != mask)
        {
            return false;
        }
        b0 += 128;
        b1 += 128;
    }
    while (b0 < lastAddr)
    {
        if (*b0 != *b1) return false;
        b0++;
        b1++;
    }
    return true;
}
public static unsafe bool Compare128(byte* b0, byte* b1, int length)
{
    byte* lastAddr = b0 + length;
    byte* lastAddrMinus64 = lastAddr - 64;
    const int mask = 0xFFFF;
    while (b0 < lastAddrMinus64) // unroll the loop so that we are comparing 64 bytes at a time.
    {
        if (Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(b0), Sse2.LoadVector128(b1))) != mask)
        {
            return false;
        }
        if (Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(b0 + 16), Sse2.LoadVector128(b1 + 16))) != mask)
        {
            return false;
        }
        if (Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(b0 + 32), Sse2.LoadVector128(b1 + 32))) != mask)
        {
            return false;
        }
        if (Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(b0 + 48), Sse2.LoadVector128(b1 + 48))) != mask)
        {
            return false;
        }
        b0 += 64;
        b1 += 64;
    }
    while (b0 < lastAddr)
    {
        if (*b0 != *b1) return false;
        b0++;
        b1++;
    }
    return true;
}
#endif
public static unsafe bool Compare64(byte* b0, byte* b1, int length)
{
    byte* lastAddr = b0 + length;
    byte* lastAddrMinus32 = lastAddr - 32;
    while (b0 < lastAddrMinus32) // unroll the loop so that we are comparing 32 bytes at a time.
    {
        if (*(ulong*)b0 != *(ulong*)b1) return false;
        if (*(ulong*)(b0 + 8) != *(ulong*)(b1 + 8)) return false;
        if (*(ulong*)(b0 + 16) != *(ulong*)(b1 + 16)) return false;
        if (*(ulong*)(b0 + 24) != *(ulong*)(b1 + 24)) return false;
        b0 += 32;
        b1 += 32;
    }
    while (b0 < lastAddr)
    {
        if (*b0 != *b1) return false;
        b0++;
        b1++;
    }
    return true;
}

It seems that EqualBytesLongUnrolled is the best from the above suggested.

Skipped methods (Enumerable.SequenceEqual,StructuralComparisons.StructuralEqualityComparer.Equals), were not-patient-for-slow. On 265MB arrays I have measured this:

Host Process Environment Information:
BenchmarkDotNet.Core=v0.9.9.0
OS=Microsoft Windows NT 6.2.9200.0
Processor=Intel(R) Core(TM) i7-3770 CPU 3.40GHz, ProcessorCount=8
Frequency=3323582 ticks, Resolution=300.8802 ns, Timer=TSC
CLR=MS.NET 4.0.30319.42000, Arch=64-bit RELEASE [RyuJIT]
GC=Concurrent Workstation
JitModules=clrjit-v4.6.1590.0

Type=CompareMemoriesBenchmarks  Mode=Throughput  

                 Method |      Median |    StdDev | Scaled | Scaled-SD |
----------------------- |------------ |---------- |------- |---------- |
             NewMemCopy |  30.0443 ms | 1.1880 ms |   1.00 |      0.00 |
 EqualBytesLongUnrolled |  29.9917 ms | 0.7480 ms |   0.99 |      0.04 |
          msvcrt_memcmp |  30.0930 ms | 0.2964 ms |   1.00 |      0.03 |
          UnsafeCompare |  31.0520 ms | 0.7072 ms |   1.03 |      0.04 |
       ByteArrayCompare | 212.9980 ms | 2.0776 ms |   7.06 |      0.25 |

OS=Windows
Processor=?, ProcessorCount=8
Frequency=3323582 ticks, Resolution=300.8802 ns, Timer=TSC
CLR=CORE, Arch=64-bit ? [RyuJIT]
GC=Concurrent Workstation
dotnet cli version: 1.0.0-preview2-003131

Type=CompareMemoriesBenchmarks  Mode=Throughput  

                 Method |      Median |    StdDev | Scaled | Scaled-SD |
----------------------- |------------ |---------- |------- |---------- |
             NewMemCopy |  30.1789 ms | 0.0437 ms |   1.00 |      0.00 |
 EqualBytesLongUnrolled |  30.1985 ms | 0.1782 ms |   1.00 |      0.01 |
          msvcrt_memcmp |  30.1084 ms | 0.0660 ms |   1.00 |      0.00 |
          UnsafeCompare |  31.1845 ms | 0.4051 ms |   1.03 |      0.01 |
       ByteArrayCompare | 212.0213 ms | 0.1694 ms |   7.03 |      0.01 |

If you are looking for a very fast byte array equality comparer, I suggest you take a look at this STSdb Labs article: Byte array equality comparer. It features some of the fastest implementations for byte[] array equality comparing, which are presented, performance tested and summarized.

You can also focus on these implementations:

BigEndianByteArrayComparer - fast byte[] array comparer from left to right (BigEndian) BigEndianByteArrayEqualityComparer - - fast byte[] equality comparer from left to right (BigEndian) LittleEndianByteArrayComparer - fast byte[] array comparer from right to left (LittleEndian) LittleEndianByteArrayEqualityComparer - fast byte[] equality comparer from right to left (LittleEndian)


Let's add one more!

Recently Microsoft released a special NuGet package, System.Runtime.CompilerServices.Unsafe. It's special because it's written in IL, and provides low-level functionality not directly available in C#.

One of its methods, Unsafe.As<T>(object) allows casting any reference type to another reference type, skipping any safety checks. This is usually a very bad idea, but if both types have the same structure, it can work. So we can use this to cast a byte[] to a long[]:

bool CompareWithUnsafeLibrary(byte[] a1, byte[] a2)
{
    if (a1.Length != a2.Length) return false;

    var longSize = (int)Math.Floor(a1.Length / 8.0);
    var long1 = Unsafe.As<long[]>(a1);
    var long2 = Unsafe.As<long[]>(a2);

    for (var i = 0; i < longSize; i++)
    {
        if (long1[i] != long2[i]) return false;
    }

    for (var i = longSize * 8; i < a1.Length; i++)
    {
        if (a1[i] != a2[i]) return false;
    }

    return true;
}

Note that long1.Length would still return the original array's length, since it's stored in a field in the array's memory structure.

This method is not quite as fast as other methods demonstrated here, but it is a lot faster than the naive method, doesn't use unsafe code or P/Invoke or pinning, and the implementation is quite straightforward (IMO). Here are some BenchmarkDotNet results from my machine:

BenchmarkDotNet=v0.10.3.0, OS=Microsoft Windows NT 6.2.9200.0
Processor=Intel(R) Core(TM) i7-4870HQ CPU 2.50GHz, ProcessorCount=8
Frequency=2435775 Hz, Resolution=410.5470 ns, Timer=TSC
  [Host]     : Clr 4.0.30319.42000, 64bit RyuJIT-v4.6.1637.0
  DefaultJob : Clr 4.0.30319.42000, 64bit RyuJIT-v4.6.1637.0

                 Method |          Mean |    StdDev |
----------------------- |-------------- |---------- |
          UnsafeLibrary |   125.8229 ns | 0.3588 ns |
          UnsafeCompare |    89.9036 ns | 0.8243 ns |
           JSharpEquals | 1,432.1717 ns | 1.3161 ns |
 EqualBytesLongUnrolled |    43.7863 ns | 0.8923 ns |
              NewMemCmp |    65.4108 ns | 0.2202 ns |
            ArraysEqual |   910.8372 ns | 2.6082 ns |
          PInvokeMemcmp |    52.7201 ns | 0.1105 ns |

I've also created a gist with all the tests.


I posted a similar question about checking if byte[] is full of zeroes. (SIMD code was beaten so I removed it from this answer.) Here is fastest code from my comparisons:

static unsafe bool EqualBytesLongUnrolled (byte[] data1, byte[] data2)
{
    if (data1 == data2)
        return true;
    if (data1.Length != data2.Length)
        return false;

    fixed (byte* bytes1 = data1, bytes2 = data2) {
        int len = data1.Length;
        int rem = len % (sizeof(long) * 16);
        long* b1 = (long*)bytes1;
        long* b2 = (long*)bytes2;
        long* e1 = (long*)(bytes1 + len - rem);

        while (b1 < e1) {
            if (*(b1) != *(b2) || *(b1 + 1) != *(b2 + 1) || 
                *(b1 + 2) != *(b2 + 2) || *(b1 + 3) != *(b2 + 3) ||
                *(b1 + 4) != *(b2 + 4) || *(b1 + 5) != *(b2 + 5) || 
                *(b1 + 6) != *(b2 + 6) || *(b1 + 7) != *(b2 + 7) ||
                *(b1 + 8) != *(b2 + 8) || *(b1 + 9) != *(b2 + 9) || 
                *(b1 + 10) != *(b2 + 10) || *(b1 + 11) != *(b2 + 11) ||
                *(b1 + 12) != *(b2 + 12) || *(b1 + 13) != *(b2 + 13) || 
                *(b1 + 14) != *(b2 + 14) || *(b1 + 15) != *(b2 + 15))
                return false;
            b1 += 16;
            b2 += 16;
        }

        for (int i = 0; i < rem; i++)
            if (data1 [len - 1 - i] != data2 [len - 1 - i])
                return false;

        return true;
    }
}

Measured on two 256MB byte arrays:

UnsafeCompare                           : 86,8784 ms
EqualBytesSimd                          : 71,5125 ms
EqualBytesSimdUnrolled                  : 73,1917 ms
EqualBytesLongUnrolled                  : 39,8623 ms

I thought about block-transfer acceleration methods built into many graphics cards. But then you would have to copy over all the data byte-wise, so this doesn't help you much if you don't want to implement a whole portion of your logic in unmanaged and hardware-dependent code...

Another way of optimization similar to the approach shown above would be to store as much of your data as possible in a long[] rather than a byte[] right from the start, for example if you are reading it sequentially from a binary file, or if you use a memory mapped file, read in data as long[] or single long values. Then, your comparison loop will only need 1/8th of the number of iterations it would have to do for a byte[] containing the same amount of data. It is a matter of when and how often you need to compare vs. when and how often you need to access the data in a byte-by-byte manner, e.g. to use it in an API call as a parameter in a method that expects a byte[]. In the end, you only can tell if you really know the use case...


The short answer is this:

    public bool Compare(byte[] b1, byte[] b2)
    {
        return Encoding.ASCII.GetString(b1) == Encoding.ASCII.GetString(b2);
    }

In such a way you can use the optimized .NET string compare to make a byte array compare without the need to write unsafe code. This is how it is done in the background:

private unsafe static bool EqualsHelper(String strA, String strB)
{
    Contract.Requires(strA != null);
    Contract.Requires(strB != null);
    Contract.Requires(strA.Length == strB.Length);

    int length = strA.Length;

    fixed (char* ap = &strA.m_firstChar) fixed (char* bp = &strB.m_firstChar)
    {
        char* a = ap;
        char* b = bp;

        // Unroll the loop

        #if AMD64
            // For the AMD64 bit platform we unroll by 12 and
            // check three qwords at a time. This is less code
            // than the 32 bit case and is shorter
            // pathlength.

            while (length >= 12)
            {
                if (*(long*)a     != *(long*)b)     return false;
                if (*(long*)(a+4) != *(long*)(b+4)) return false;
                if (*(long*)(a+8) != *(long*)(b+8)) return false;
                a += 12; b += 12; length -= 12;
            }
       #else
           while (length >= 10)
           {
               if (*(int*)a != *(int*)b) return false;
               if (*(int*)(a+2) != *(int*)(b+2)) return false;
               if (*(int*)(a+4) != *(int*)(b+4)) return false;
               if (*(int*)(a+6) != *(int*)(b+6)) return false;
               if (*(int*)(a+8) != *(int*)(b+8)) return false;
               a += 10; b += 10; length -= 10;
           }
       #endif

        // This depends on the fact that the String objects are
        // always zero terminated and that the terminating zero is not included
        // in the length. For odd string sizes, the last compare will include
        // the zero terminator.
        while (length > 0)
        {
            if (*(int*)a != *(int*)b) break;
            a += 2; b += 2; length -= 2;
        }

        return (length <= 0);
    }
}

Since many of the fancy solutions above don't work with UWP and because I love Linq and functional approaches I pressent you my version to this problem. To escape the comparison when the first difference occures, I chose .FirstOrDefault()

public static bool CompareByteArrays(byte[] ba0, byte[] ba1) =>
    !(ba0.Length != ba1.Length || Enumerable.Range(1,ba0.Length)
        .FirstOrDefault(n => ba0[n] != ba1[n]) > 0);

Span<T> offers an extremely competitive alternative without having to throw confusing and/or non-portable fluff into your own application's code base:

// byte[] is implicitly convertible to ReadOnlySpan<byte>
static bool ByteArrayCompare(ReadOnlySpan<byte> a1, ReadOnlySpan<byte> a2)
{
    return a1.SequenceEqual(a2);
}

The (guts of the) implementation as of .NET 5.0.0 can be found here.

I've revised @EliArbel's gist to add this method as SpansEqual, drop most of the less interesting performers in others' benchmarks, run it with different array sizes, output graphs, and mark SpansEqual as the baseline so that it reports how the different methods compare to SpansEqual.

The below numbers are from the results, lightly edited to remove "Error" column.

|        Method |  ByteCount |               Mean |            StdDev | Ratio | RatioSD |
|-------------- |----------- |-------------------:|------------------:|------:|--------:|
|    SpansEqual |         15 |           4.629 ns |         0.0289 ns |  1.00 |    0.00 |
|  LongPointers |         15 |           4.598 ns |         0.0416 ns |  0.99 |    0.01 |
|      Unrolled |         15 |          18.199 ns |         0.0291 ns |  3.93 |    0.02 |
| PInvokeMemcmp |         15 |           9.872 ns |         0.0441 ns |  2.13 |    0.02 |
|               |            |                    |                   |       |         |
|    SpansEqual |       1026 |          19.965 ns |         0.0880 ns |  1.00 |    0.00 |
|  LongPointers |       1026 |          63.005 ns |         0.5217 ns |  3.16 |    0.04 |
|      Unrolled |       1026 |          38.731 ns |         0.0166 ns |  1.94 |    0.01 |
| PInvokeMemcmp |       1026 |          40.355 ns |         0.0202 ns |  2.02 |    0.01 |
|               |            |                    |                   |       |         |
|    SpansEqual |    1048585 |      43,761.339 ns |        30.8744 ns |  1.00 |    0.00 |
|  LongPointers |    1048585 |      59,585.479 ns |        17.3907 ns |  1.36 |    0.00 |
|      Unrolled |    1048585 |      54,646.243 ns |        35.7638 ns |  1.25 |    0.00 |
| PInvokeMemcmp |    1048585 |      55,198.289 ns |        23.9732 ns |  1.26 |    0.00 |
|               |            |                    |                   |       |         |
|    SpansEqual | 2147483591 | 240,607,692.857 ns | 2,733,489.4894 ns |  1.00 |    0.00 |
|  LongPointers | 2147483591 | 238,223,478.571 ns | 2,033,769.5979 ns |  0.99 |    0.02 |
|      Unrolled | 2147483591 | 236,227,340.000 ns | 2,189,627.0164 ns |  0.98 |    0.00 |
| PInvokeMemcmp | 2147483591 | 238,724,660.000 ns | 3,726,140.4720 ns |  0.99 |    0.02 |

I was surprised to see SpansEqual not come out on top for the max-array-size methods, but the difference is so minor that I don't think it'll ever matter.

My system info:

BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19042
Intel Core i7-6850K CPU 3.60GHz (Skylake), 1 CPU, 12 logical and 6 physical cores
.NET Core SDK=5.0.100
  [Host]     : .NET Core 5.0.0 (CoreCLR 5.0.20.51904, CoreFX 5.0.20.51904), X64 RyuJIT
  DefaultJob : .NET Core 5.0.0 (CoreCLR 5.0.20.51904, CoreFX 5.0.20.51904), X64 RyuJIT

This is almost certainly much slower than any other version given here, but it was fun to write.

static bool ByteArrayEquals(byte[] a1, byte[] a2) 
{
    return a1.Zip(a2, (l, r) => l == r).All(x => x);
}

Couldn't find a solution I'm completely happy with (reasonable performance, but no unsafe code/pinvoke) so I came up with this, nothing really original, but works:

    /// <summary>
    /// 
    /// </summary>
    /// <param name="array1"></param>
    /// <param name="array2"></param>
    /// <param name="bytesToCompare"> 0 means compare entire arrays</param>
    /// <returns></returns>
    public static bool ArraysEqual(byte[] array1, byte[] array2, int bytesToCompare = 0)
    {
        if (array1.Length != array2.Length) return false;

        var length = (bytesToCompare == 0) ? array1.Length : bytesToCompare;
        var tailIdx = length - length % sizeof(Int64);

        //check in 8 byte chunks
        for (var i = 0; i < tailIdx; i += sizeof(Int64))
        {
            if (BitConverter.ToInt64(array1, i) != BitConverter.ToInt64(array2, i)) return false;
        }

        //check the remainder of the array, always shorter than 8 bytes
        for (var i = tailIdx; i < length; i++)
        {
            if (array1[i] != array2[i]) return false;
        }

        return true;
    }

Performance compared with some of the other solutions on this page:

Simple Loop: 19837 ticks, 1.00

*BitConverter: 4886 ticks, 4.06

UnsafeCompare: 1636 ticks, 12.12

EqualBytesLongUnrolled: 637 ticks, 31.09

P/Invoke memcmp: 369 ticks, 53.67

Tested in linqpad, 1000000 bytes identical arrays (worst case scenario), 500 iterations each.


There's a new built-in solution for this in .NET 4 - IStructuralEquatable

static bool ByteArrayCompare(byte[] a1, byte[] a2) 
{
    return StructuralComparisons.StructuralEqualityComparer.Equals(a1, a2);
}

You can use Enumerable.SequenceEqual method.

using System;
using System.Linq;
...
var a1 = new int[] { 1, 2, 3};
var a2 = new int[] { 1, 2, 3};
var a3 = new int[] { 1, 2, 4};
var x = a1.SequenceEqual(a2); // true
var y = a1.SequenceEqual(a3); // false

If you can't use .NET 3.5 for some reason, your method is OK.
Compiler\run-time environment will optimize your loop so you don't need to worry about performance.


Examples related to c#

How can I convert this one line of ActionScript to C#? Microsoft Advertising SDK doesn't deliverer ads How to use a global array in C#? How to correctly write async method? C# - insert values from file into two arrays Uploading into folder in FTP? Are these methods thread safe? dotnet ef not found in .NET Core 3 HTTP Error 500.30 - ANCM In-Process Start Failure Best way to "push" into C# array

Examples related to .net

You must add a reference to assembly 'netstandard, Version=2.0.0.0 How to use Bootstrap 4 in ASP.NET Core No authenticationScheme was specified, and there was no DefaultChallengeScheme found with default authentification and custom authorization .net Core 2.0 - Package was restored using .NetFramework 4.6.1 instead of target framework .netCore 2.0. The package may not be fully compatible Update .NET web service to use TLS 1.2 EF Core add-migration Build Failed What is the difference between .NET Core and .NET Standard Class Library project types? Visual Studio 2017 - Could not load file or assembly 'System.Runtime, Version=4.1.0.0' or one of its dependencies Nuget connection attempt failed "Unable to load the service index for source" Token based authentication in Web API without any user interface

Examples related to arrays

PHP array value passes to next row Use NSInteger as array index How do I show a message in the foreach loop? Objects are not valid as a React child. If you meant to render a collection of children, use an array instead Iterating over arrays in Python 3 Best way to "push" into C# array Sort Array of object by object field in Angular 6 Checking for duplicate strings in JavaScript array what does numpy ndarray shape do? How to round a numpy array?

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to j#

Comparing two byte arrays in .NET