[java] C++ equivalent of java's instanceof

What is the preferred method to achieve the C++ equivalent of java's instanceof?

This question is related to java c++ oop instanceof

The answer is


Instanceof implementation without dynamic_cast

I think this question is still relevant today. Using the C++11 standard you are now able to implement a instanceof function without using dynamic_cast like this:

if (dynamic_cast<B*>(aPtr) != nullptr) {
  // aPtr is instance of B
} else {
  // aPtr is NOT instance of B
}

But you're still reliant on RTTI support. So here is my solution for this problem depending on some Macros and Metaprogramming Magic. The only drawback imho is that this approach does not work for multiple inheritance.

InstanceOfMacros.h

#include <set>
#include <tuple>
#include <typeindex>

#define _EMPTY_BASE_TYPE_DECL() using BaseTypes = std::tuple<>;
#define _BASE_TYPE_DECL(Class, BaseClass) \
  using BaseTypes = decltype(std::tuple_cat(std::tuple<BaseClass>(), Class::BaseTypes()));
#define _INSTANCE_OF_DECL_BODY(Class)                                 \
  static const std::set<std::type_index> baseTypeContainer;           \
  virtual bool instanceOfHelper(const std::type_index &_tidx) {       \
    if (std::type_index(typeid(ThisType)) == _tidx) return true;      \
    if (std::tuple_size<BaseTypes>::value == 0) return false;         \
    return baseTypeContainer.find(_tidx) != baseTypeContainer.end();  \
  }                                                                   \
  template <typename... T>                                            \
  static std::set<std::type_index> getTypeIndexes(std::tuple<T...>) { \
    return std::set<std::type_index>{std::type_index(typeid(T))...};  \
  }

#define INSTANCE_OF_SUB_DECL(Class, BaseClass) \
 protected:                                    \
  using ThisType = Class;                      \
  _BASE_TYPE_DECL(Class, BaseClass)            \
  _INSTANCE_OF_DECL_BODY(Class)

#define INSTANCE_OF_BASE_DECL(Class)                                                    \
 protected:                                                                             \
  using ThisType = Class;                                                               \
  _EMPTY_BASE_TYPE_DECL()                                                               \
  _INSTANCE_OF_DECL_BODY(Class)                                                         \
 public:                                                                                \
  template <typename Of>                                                                \
  typename std::enable_if<std::is_base_of<Class, Of>::value, bool>::type instanceOf() { \
    return instanceOfHelper(std::type_index(typeid(Of)));                               \
  }

#define INSTANCE_OF_IMPL(Class) \
  const std::set<std::type_index> Class::baseTypeContainer = Class::getTypeIndexes(Class::BaseTypes());

Demo

You can then use this stuff (with caution) as follows:

DemoClassHierarchy.hpp*

#include "InstanceOfMacros.h"

struct A {
  virtual ~A() {}
  INSTANCE_OF_BASE_DECL(A)
};
INSTANCE_OF_IMPL(A)

struct B : public A {
  virtual ~B() {}
  INSTANCE_OF_SUB_DECL(B, A)
};
INSTANCE_OF_IMPL(B)

struct C : public A {
  virtual ~C() {}
  INSTANCE_OF_SUB_DECL(C, A)
};
INSTANCE_OF_IMPL(C)

struct D : public C {
  virtual ~D() {}
  INSTANCE_OF_SUB_DECL(D, C)
};
INSTANCE_OF_IMPL(D)

The following code presents a small demo to verify rudimentary the correct behavior.

InstanceOfDemo.cpp

#include <iostream>
#include <memory>
#include "DemoClassHierarchy.hpp"

int main() {
  A *a2aPtr = new A;
  A *a2bPtr = new B;
  std::shared_ptr<A> a2cPtr(new C);
  C *c2dPtr = new D;
  std::unique_ptr<A> a2dPtr(new D);

  std::cout << "a2aPtr->instanceOf<A>(): expected=1, value=" << a2aPtr->instanceOf<A>() << std::endl;
  std::cout << "a2aPtr->instanceOf<B>(): expected=0, value=" << a2aPtr->instanceOf<B>() << std::endl;
  std::cout << "a2aPtr->instanceOf<C>(): expected=0, value=" << a2aPtr->instanceOf<C>() << std::endl;
  std::cout << "a2aPtr->instanceOf<D>(): expected=0, value=" << a2aPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2bPtr->instanceOf<A>(): expected=1, value=" << a2bPtr->instanceOf<A>() << std::endl;
  std::cout << "a2bPtr->instanceOf<B>(): expected=1, value=" << a2bPtr->instanceOf<B>() << std::endl;
  std::cout << "a2bPtr->instanceOf<C>(): expected=0, value=" << a2bPtr->instanceOf<C>() << std::endl;
  std::cout << "a2bPtr->instanceOf<D>(): expected=0, value=" << a2bPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2cPtr->instanceOf<A>(): expected=1, value=" << a2cPtr->instanceOf<A>() << std::endl;
  std::cout << "a2cPtr->instanceOf<B>(): expected=0, value=" << a2cPtr->instanceOf<B>() << std::endl;
  std::cout << "a2cPtr->instanceOf<C>(): expected=1, value=" << a2cPtr->instanceOf<C>() << std::endl;
  std::cout << "a2cPtr->instanceOf<D>(): expected=0, value=" << a2cPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "c2dPtr->instanceOf<A>(): expected=1, value=" << c2dPtr->instanceOf<A>() << std::endl;
  std::cout << "c2dPtr->instanceOf<B>(): expected=0, value=" << c2dPtr->instanceOf<B>() << std::endl;
  std::cout << "c2dPtr->instanceOf<C>(): expected=1, value=" << c2dPtr->instanceOf<C>() << std::endl;
  std::cout << "c2dPtr->instanceOf<D>(): expected=1, value=" << c2dPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2dPtr->instanceOf<A>(): expected=1, value=" << a2dPtr->instanceOf<A>() << std::endl;
  std::cout << "a2dPtr->instanceOf<B>(): expected=0, value=" << a2dPtr->instanceOf<B>() << std::endl;
  std::cout << "a2dPtr->instanceOf<C>(): expected=1, value=" << a2dPtr->instanceOf<C>() << std::endl;
  std::cout << "a2dPtr->instanceOf<D>(): expected=1, value=" << a2dPtr->instanceOf<D>() << std::endl;

  delete a2aPtr;
  delete a2bPtr;
  delete c2dPtr;

  return 0;
}

Output:

a2aPtr->instanceOf<A>(): expected=1, value=1
a2aPtr->instanceOf<B>(): expected=0, value=0
a2aPtr->instanceOf<C>(): expected=0, value=0
a2aPtr->instanceOf<D>(): expected=0, value=0

a2bPtr->instanceOf<A>(): expected=1, value=1
a2bPtr->instanceOf<B>(): expected=1, value=1
a2bPtr->instanceOf<C>(): expected=0, value=0
a2bPtr->instanceOf<D>(): expected=0, value=0

a2cPtr->instanceOf<A>(): expected=1, value=1
a2cPtr->instanceOf<B>(): expected=0, value=0
a2cPtr->instanceOf<C>(): expected=1, value=1
a2cPtr->instanceOf<D>(): expected=0, value=0

c2dPtr->instanceOf<A>(): expected=1, value=1
c2dPtr->instanceOf<B>(): expected=0, value=0
c2dPtr->instanceOf<C>(): expected=1, value=1
c2dPtr->instanceOf<D>(): expected=1, value=1

a2dPtr->instanceOf<A>(): expected=1, value=1
a2dPtr->instanceOf<B>(): expected=0, value=0
a2dPtr->instanceOf<C>(): expected=1, value=1
a2dPtr->instanceOf<D>(): expected=1, value=1

Performance

The most interesting question which now arises is, if this evil stuff is more efficient than the usage of dynamic_cast. Therefore I've written a very basic performance measurement app.

InstanceOfPerformance.cpp

#include <chrono>
#include <iostream>
#include <string>
#include "DemoClassHierarchy.hpp"

template <typename Base, typename Derived, typename Duration>
Duration instanceOfMeasurement(unsigned _loopCycles) {
  auto start = std::chrono::high_resolution_clock::now();
  volatile bool isInstanceOf = false;
  for (unsigned i = 0; i < _loopCycles; ++i) {
    Base *ptr = new Derived;
    isInstanceOf = ptr->template instanceOf<Derived>();
    delete ptr;
  }
  auto end = std::chrono::high_resolution_clock::now();
  return std::chrono::duration_cast<Duration>(end - start);
}

template <typename Base, typename Derived, typename Duration>
Duration dynamicCastMeasurement(unsigned _loopCycles) {
  auto start = std::chrono::high_resolution_clock::now();
  volatile bool isInstanceOf = false;
  for (unsigned i = 0; i < _loopCycles; ++i) {
    Base *ptr = new Derived;
    isInstanceOf = dynamic_cast<Derived *>(ptr) != nullptr;
    delete ptr;
  }
  auto end = std::chrono::high_resolution_clock::now();
  return std::chrono::duration_cast<Duration>(end - start);
}

int main() {
  unsigned testCycles = 10000000;
  std::string unit = " us";
  using DType = std::chrono::microseconds;

  std::cout << "InstanceOf performance(A->D)  : " << instanceOfMeasurement<A, D, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->C)  : " << instanceOfMeasurement<A, C, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->B)  : " << instanceOfMeasurement<A, B, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->A)  : " << instanceOfMeasurement<A, A, DType>(testCycles).count() << unit
            << "\n"
            << std::endl;
  std::cout << "DynamicCast performance(A->D) : " << dynamicCastMeasurement<A, D, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->C) : " << dynamicCastMeasurement<A, C, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->B) : " << dynamicCastMeasurement<A, B, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->A) : " << dynamicCastMeasurement<A, A, DType>(testCycles).count() << unit
            << "\n"
            << std::endl;
  return 0;
}

The results vary and are essentially based on the degree of compiler optimization. Compiling the performance measurement program using g++ -std=c++11 -O0 -o instanceof-performance InstanceOfPerformance.cpp the output on my local machine was:

InstanceOf performance(A->D)  : 699638 us
InstanceOf performance(A->C)  : 642157 us
InstanceOf performance(A->B)  : 671399 us
InstanceOf performance(A->A)  : 626193 us

DynamicCast performance(A->D) : 754937 us
DynamicCast performance(A->C) : 706766 us
DynamicCast performance(A->B) : 751353 us
DynamicCast performance(A->A) : 676853 us

Mhm, this result was very sobering, because the timings demonstrates that the new approach is not much faster compared to the dynamic_cast approach. It is even less efficient for the special test case which tests if a pointer of A is an instance ofA. BUT the tide turns by tuning our binary using compiler otpimization. The respective compiler command is g++ -std=c++11 -O3 -o instanceof-performance InstanceOfPerformance.cpp. The result on my local machine was amazing:

InstanceOf performance(A->D)  : 3035 us
InstanceOf performance(A->C)  : 5030 us
InstanceOf performance(A->B)  : 5250 us
InstanceOf performance(A->A)  : 3021 us

DynamicCast performance(A->D) : 666903 us
DynamicCast performance(A->C) : 698567 us
DynamicCast performance(A->B) : 727368 us
DynamicCast performance(A->A) : 3098 us

If you are not reliant on multiple inheritance, are no opponent of good old C macros, RTTI and template metaprogramming and are not too lazy to add some small instructions to the classes of your class hierarchy, then this approach can boost your application a little bit with respect to its performance, if you often end up with checking the instance of a pointer. But use it with caution. There is no warranty for the correctness of this approach.

Note: All demos were compiled using clang (Apple LLVM version 9.0.0 (clang-900.0.39.2)) under macOS Sierra on a MacBook Pro Mid 2012.

Edit: I've also tested the performance on a Linux machine using gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609. On this platform the perfomance benefit was not so significant as on macOs with clang.

Output (without compiler optimization):

InstanceOf performance(A->D)  : 390768 us
InstanceOf performance(A->C)  : 333994 us
InstanceOf performance(A->B)  : 334596 us
InstanceOf performance(A->A)  : 300959 us

DynamicCast performance(A->D) : 331942 us
DynamicCast performance(A->C) : 303715 us
DynamicCast performance(A->B) : 400262 us
DynamicCast performance(A->A) : 324942 us

Output (with compiler optimization):

InstanceOf performance(A->D)  : 209501 us
InstanceOf performance(A->C)  : 208727 us
InstanceOf performance(A->B)  : 207815 us
InstanceOf performance(A->A)  : 197953 us

DynamicCast performance(A->D) : 259417 us
DynamicCast performance(A->C) : 256203 us
DynamicCast performance(A->B) : 261202 us
DynamicCast performance(A->A) : 193535 us

#include <iostream.h>
#include<typeinfo.h>

template<class T>
void fun(T a)
{
  if(typeid(T) == typeid(int))
  {
     //Do something
     cout<<"int";
  }
  else if(typeid(T) == typeid(float))
  {
     //Do Something else
     cout<<"float";
  }
}

void main()
 {
      fun(23);
      fun(90.67f);
 }

Instanceof implementation without dynamic_cast

I think this question is still relevant today. Using the C++11 standard you are now able to implement a instanceof function without using dynamic_cast like this:

if (dynamic_cast<B*>(aPtr) != nullptr) {
  // aPtr is instance of B
} else {
  // aPtr is NOT instance of B
}

But you're still reliant on RTTI support. So here is my solution for this problem depending on some Macros and Metaprogramming Magic. The only drawback imho is that this approach does not work for multiple inheritance.

InstanceOfMacros.h

#include <set>
#include <tuple>
#include <typeindex>

#define _EMPTY_BASE_TYPE_DECL() using BaseTypes = std::tuple<>;
#define _BASE_TYPE_DECL(Class, BaseClass) \
  using BaseTypes = decltype(std::tuple_cat(std::tuple<BaseClass>(), Class::BaseTypes()));
#define _INSTANCE_OF_DECL_BODY(Class)                                 \
  static const std::set<std::type_index> baseTypeContainer;           \
  virtual bool instanceOfHelper(const std::type_index &_tidx) {       \
    if (std::type_index(typeid(ThisType)) == _tidx) return true;      \
    if (std::tuple_size<BaseTypes>::value == 0) return false;         \
    return baseTypeContainer.find(_tidx) != baseTypeContainer.end();  \
  }                                                                   \
  template <typename... T>                                            \
  static std::set<std::type_index> getTypeIndexes(std::tuple<T...>) { \
    return std::set<std::type_index>{std::type_index(typeid(T))...};  \
  }

#define INSTANCE_OF_SUB_DECL(Class, BaseClass) \
 protected:                                    \
  using ThisType = Class;                      \
  _BASE_TYPE_DECL(Class, BaseClass)            \
  _INSTANCE_OF_DECL_BODY(Class)

#define INSTANCE_OF_BASE_DECL(Class)                                                    \
 protected:                                                                             \
  using ThisType = Class;                                                               \
  _EMPTY_BASE_TYPE_DECL()                                                               \
  _INSTANCE_OF_DECL_BODY(Class)                                                         \
 public:                                                                                \
  template <typename Of>                                                                \
  typename std::enable_if<std::is_base_of<Class, Of>::value, bool>::type instanceOf() { \
    return instanceOfHelper(std::type_index(typeid(Of)));                               \
  }

#define INSTANCE_OF_IMPL(Class) \
  const std::set<std::type_index> Class::baseTypeContainer = Class::getTypeIndexes(Class::BaseTypes());

Demo

You can then use this stuff (with caution) as follows:

DemoClassHierarchy.hpp*

#include "InstanceOfMacros.h"

struct A {
  virtual ~A() {}
  INSTANCE_OF_BASE_DECL(A)
};
INSTANCE_OF_IMPL(A)

struct B : public A {
  virtual ~B() {}
  INSTANCE_OF_SUB_DECL(B, A)
};
INSTANCE_OF_IMPL(B)

struct C : public A {
  virtual ~C() {}
  INSTANCE_OF_SUB_DECL(C, A)
};
INSTANCE_OF_IMPL(C)

struct D : public C {
  virtual ~D() {}
  INSTANCE_OF_SUB_DECL(D, C)
};
INSTANCE_OF_IMPL(D)

The following code presents a small demo to verify rudimentary the correct behavior.

InstanceOfDemo.cpp

#include <iostream>
#include <memory>
#include "DemoClassHierarchy.hpp"

int main() {
  A *a2aPtr = new A;
  A *a2bPtr = new B;
  std::shared_ptr<A> a2cPtr(new C);
  C *c2dPtr = new D;
  std::unique_ptr<A> a2dPtr(new D);

  std::cout << "a2aPtr->instanceOf<A>(): expected=1, value=" << a2aPtr->instanceOf<A>() << std::endl;
  std::cout << "a2aPtr->instanceOf<B>(): expected=0, value=" << a2aPtr->instanceOf<B>() << std::endl;
  std::cout << "a2aPtr->instanceOf<C>(): expected=0, value=" << a2aPtr->instanceOf<C>() << std::endl;
  std::cout << "a2aPtr->instanceOf<D>(): expected=0, value=" << a2aPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2bPtr->instanceOf<A>(): expected=1, value=" << a2bPtr->instanceOf<A>() << std::endl;
  std::cout << "a2bPtr->instanceOf<B>(): expected=1, value=" << a2bPtr->instanceOf<B>() << std::endl;
  std::cout << "a2bPtr->instanceOf<C>(): expected=0, value=" << a2bPtr->instanceOf<C>() << std::endl;
  std::cout << "a2bPtr->instanceOf<D>(): expected=0, value=" << a2bPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2cPtr->instanceOf<A>(): expected=1, value=" << a2cPtr->instanceOf<A>() << std::endl;
  std::cout << "a2cPtr->instanceOf<B>(): expected=0, value=" << a2cPtr->instanceOf<B>() << std::endl;
  std::cout << "a2cPtr->instanceOf<C>(): expected=1, value=" << a2cPtr->instanceOf<C>() << std::endl;
  std::cout << "a2cPtr->instanceOf<D>(): expected=0, value=" << a2cPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "c2dPtr->instanceOf<A>(): expected=1, value=" << c2dPtr->instanceOf<A>() << std::endl;
  std::cout << "c2dPtr->instanceOf<B>(): expected=0, value=" << c2dPtr->instanceOf<B>() << std::endl;
  std::cout << "c2dPtr->instanceOf<C>(): expected=1, value=" << c2dPtr->instanceOf<C>() << std::endl;
  std::cout << "c2dPtr->instanceOf<D>(): expected=1, value=" << c2dPtr->instanceOf<D>() << std::endl;
  std::cout << std::endl;
  std::cout << "a2dPtr->instanceOf<A>(): expected=1, value=" << a2dPtr->instanceOf<A>() << std::endl;
  std::cout << "a2dPtr->instanceOf<B>(): expected=0, value=" << a2dPtr->instanceOf<B>() << std::endl;
  std::cout << "a2dPtr->instanceOf<C>(): expected=1, value=" << a2dPtr->instanceOf<C>() << std::endl;
  std::cout << "a2dPtr->instanceOf<D>(): expected=1, value=" << a2dPtr->instanceOf<D>() << std::endl;

  delete a2aPtr;
  delete a2bPtr;
  delete c2dPtr;

  return 0;
}

Output:

a2aPtr->instanceOf<A>(): expected=1, value=1
a2aPtr->instanceOf<B>(): expected=0, value=0
a2aPtr->instanceOf<C>(): expected=0, value=0
a2aPtr->instanceOf<D>(): expected=0, value=0

a2bPtr->instanceOf<A>(): expected=1, value=1
a2bPtr->instanceOf<B>(): expected=1, value=1
a2bPtr->instanceOf<C>(): expected=0, value=0
a2bPtr->instanceOf<D>(): expected=0, value=0

a2cPtr->instanceOf<A>(): expected=1, value=1
a2cPtr->instanceOf<B>(): expected=0, value=0
a2cPtr->instanceOf<C>(): expected=1, value=1
a2cPtr->instanceOf<D>(): expected=0, value=0

c2dPtr->instanceOf<A>(): expected=1, value=1
c2dPtr->instanceOf<B>(): expected=0, value=0
c2dPtr->instanceOf<C>(): expected=1, value=1
c2dPtr->instanceOf<D>(): expected=1, value=1

a2dPtr->instanceOf<A>(): expected=1, value=1
a2dPtr->instanceOf<B>(): expected=0, value=0
a2dPtr->instanceOf<C>(): expected=1, value=1
a2dPtr->instanceOf<D>(): expected=1, value=1

Performance

The most interesting question which now arises is, if this evil stuff is more efficient than the usage of dynamic_cast. Therefore I've written a very basic performance measurement app.

InstanceOfPerformance.cpp

#include <chrono>
#include <iostream>
#include <string>
#include "DemoClassHierarchy.hpp"

template <typename Base, typename Derived, typename Duration>
Duration instanceOfMeasurement(unsigned _loopCycles) {
  auto start = std::chrono::high_resolution_clock::now();
  volatile bool isInstanceOf = false;
  for (unsigned i = 0; i < _loopCycles; ++i) {
    Base *ptr = new Derived;
    isInstanceOf = ptr->template instanceOf<Derived>();
    delete ptr;
  }
  auto end = std::chrono::high_resolution_clock::now();
  return std::chrono::duration_cast<Duration>(end - start);
}

template <typename Base, typename Derived, typename Duration>
Duration dynamicCastMeasurement(unsigned _loopCycles) {
  auto start = std::chrono::high_resolution_clock::now();
  volatile bool isInstanceOf = false;
  for (unsigned i = 0; i < _loopCycles; ++i) {
    Base *ptr = new Derived;
    isInstanceOf = dynamic_cast<Derived *>(ptr) != nullptr;
    delete ptr;
  }
  auto end = std::chrono::high_resolution_clock::now();
  return std::chrono::duration_cast<Duration>(end - start);
}

int main() {
  unsigned testCycles = 10000000;
  std::string unit = " us";
  using DType = std::chrono::microseconds;

  std::cout << "InstanceOf performance(A->D)  : " << instanceOfMeasurement<A, D, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->C)  : " << instanceOfMeasurement<A, C, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->B)  : " << instanceOfMeasurement<A, B, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "InstanceOf performance(A->A)  : " << instanceOfMeasurement<A, A, DType>(testCycles).count() << unit
            << "\n"
            << std::endl;
  std::cout << "DynamicCast performance(A->D) : " << dynamicCastMeasurement<A, D, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->C) : " << dynamicCastMeasurement<A, C, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->B) : " << dynamicCastMeasurement<A, B, DType>(testCycles).count() << unit
            << std::endl;
  std::cout << "DynamicCast performance(A->A) : " << dynamicCastMeasurement<A, A, DType>(testCycles).count() << unit
            << "\n"
            << std::endl;
  return 0;
}

The results vary and are essentially based on the degree of compiler optimization. Compiling the performance measurement program using g++ -std=c++11 -O0 -o instanceof-performance InstanceOfPerformance.cpp the output on my local machine was:

InstanceOf performance(A->D)  : 699638 us
InstanceOf performance(A->C)  : 642157 us
InstanceOf performance(A->B)  : 671399 us
InstanceOf performance(A->A)  : 626193 us

DynamicCast performance(A->D) : 754937 us
DynamicCast performance(A->C) : 706766 us
DynamicCast performance(A->B) : 751353 us
DynamicCast performance(A->A) : 676853 us

Mhm, this result was very sobering, because the timings demonstrates that the new approach is not much faster compared to the dynamic_cast approach. It is even less efficient for the special test case which tests if a pointer of A is an instance ofA. BUT the tide turns by tuning our binary using compiler otpimization. The respective compiler command is g++ -std=c++11 -O3 -o instanceof-performance InstanceOfPerformance.cpp. The result on my local machine was amazing:

InstanceOf performance(A->D)  : 3035 us
InstanceOf performance(A->C)  : 5030 us
InstanceOf performance(A->B)  : 5250 us
InstanceOf performance(A->A)  : 3021 us

DynamicCast performance(A->D) : 666903 us
DynamicCast performance(A->C) : 698567 us
DynamicCast performance(A->B) : 727368 us
DynamicCast performance(A->A) : 3098 us

If you are not reliant on multiple inheritance, are no opponent of good old C macros, RTTI and template metaprogramming and are not too lazy to add some small instructions to the classes of your class hierarchy, then this approach can boost your application a little bit with respect to its performance, if you often end up with checking the instance of a pointer. But use it with caution. There is no warranty for the correctness of this approach.

Note: All demos were compiled using clang (Apple LLVM version 9.0.0 (clang-900.0.39.2)) under macOS Sierra on a MacBook Pro Mid 2012.

Edit: I've also tested the performance on a Linux machine using gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609. On this platform the perfomance benefit was not so significant as on macOs with clang.

Output (without compiler optimization):

InstanceOf performance(A->D)  : 390768 us
InstanceOf performance(A->C)  : 333994 us
InstanceOf performance(A->B)  : 334596 us
InstanceOf performance(A->A)  : 300959 us

DynamicCast performance(A->D) : 331942 us
DynamicCast performance(A->C) : 303715 us
DynamicCast performance(A->B) : 400262 us
DynamicCast performance(A->A) : 324942 us

Output (with compiler optimization):

InstanceOf performance(A->D)  : 209501 us
InstanceOf performance(A->C)  : 208727 us
InstanceOf performance(A->B)  : 207815 us
InstanceOf performance(A->A)  : 197953 us

DynamicCast performance(A->D) : 259417 us
DynamicCast performance(A->C) : 256203 us
DynamicCast performance(A->B) : 261202 us
DynamicCast performance(A->A) : 193535 us

#include <iostream.h>
#include<typeinfo.h>

template<class T>
void fun(T a)
{
  if(typeid(T) == typeid(int))
  {
     //Do something
     cout<<"int";
  }
  else if(typeid(T) == typeid(float))
  {
     //Do Something else
     cout<<"float";
  }
}

void main()
 {
      fun(23);
      fun(90.67f);
 }

dynamic_cast is known to be inefficient. It traverses up the inheritance hierarchy, and it is the only solution if you have multiple levels of inheritance, and need to check if an object is an instance of any one of the types in its type hierarchy.

But if a more limited form of instanceof that only checks if an object is exactly the type you specify, suffices for your needs, the function below would be a lot more efficient:

template<typename T, typename K>
inline bool isType(const K &k) {
    return typeid(T).hash_code() == typeid(k).hash_code();
}

Here's an example of how you'd invoke the function above:

DerivedA k;
Base *p = &k;

cout << boolalpha << isType<DerivedA>(*p) << endl;  // true
cout << boolalpha << isType<DerivedB>(*p) << endl;  // false

You'd specify template type A (as the type you're checking for), and pass in the object you want to test as the argument (from which template type K would be inferred).


Depending on what you want to do you could do this:

template<typename Base, typename T>
inline bool instanceof(const T*) {
    return std::is_base_of<Base, T>::value;
}

Use:

if (instanceof<BaseClass>(ptr)) { ... }

However, this purely operates on the types as known by the compiler.

Edit:

This code should work for polymorphic pointers:

template<typename Base, typename T>
inline bool instanceof(const T *ptr) {
    return dynamic_cast<const Base*>(ptr) != nullptr;
}

Example: http://cpp.sh/6qir


Examples related to java

Under what circumstances can I call findViewById with an Options Menu / Action Bar item? How much should a function trust another function How to implement a simple scenario the OO way Two constructors How do I get some variable from another class in Java? this in equals method How to split a string in two and store it in a field How to do perspective fixing? String index out of range: 4 My eclipse won't open, i download the bundle pack it keeps saying error log

Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to oop

How to implement a simple scenario the OO way When to use 'raise NotImplementedError'? PHP: cannot declare class because the name is already in use Python class input argument Call an overridden method from super class in typescript Typescript: How to extend two classes? What's the difference between abstraction and encapsulation? An object reference is required to access a non-static member Java Multiple Inheritance Why not inherit from List<T>?

Examples related to instanceof

How to efficiently check if variable is Array or Object (in NodeJS & V8)? How to perform runtime type checking in Dart? Use of "instanceof" in Java What is the 'instanceof' operator used for in Java? Is it possible to use the instanceof operator in a switch statement? instanceof Vs getClass( ) How to see if an object is an array without using reflection? What is the instanceof operator in JavaScript? How to check if a subclass is an instance of a class at runtime? Java: Instanceof and Generics