Here are a few thoughts: Firstly, if you're genuinely concerned about the runtime of your code, be sure to know what happens when you call the built-in functions! I don't know up from down in javascript, but a quick google of the splice function returned this, which seems to indicate that you're creating a whole new array each call! I don't know if it actually matters, but it is certainly related to efficiency. I see that Breton, in the comments, has already pointed this out, but it certainly holds for whatever array-manipulating function you choose.
Anyways, onto actually solving the problem.
When I read that you wanted to sort, my first thought is to use insertion sort!. It is handy because it runs in linear time on sorted, or nearly-sorted lists. As your arrays will have only 1 element out of order, that counts as nearly-sorted (except for, well, arrays of size 2 or 3 or whatever, but at that point, c'mon). Now, implementing the sort isn't too too bad, but it is a hassle you may not want to deal with, and again, I don't know a thing about javascript and if it will be easy or hard or whatnot. This removes the need for your lookup function, and you just push (as Breton suggested).
Secondly, your "quicksort-esque" lookup function seems to be a binary search algorithm! It is a very nice algorithm, intuitive and fast, but with one catch: it is notoriously difficult to implement correctly. I won't dare say if yours is correct or not (I hope it is, of course! :)), but be wary if you want to use it.
Anyways, summary: using "push" with insertion sort will work in linear time (assuming the rest of the array is sorted), and avoid any messy binary search algorithm requirements. I don't know if this is the best way (underlying implementation of arrays, maybe a crazy built-in function does it better, who knows), but it seems reasonable to me. :) - Agor.