[python] How to make scipy.interpolate give an extrapolated result beyond the input range?

I'm trying to port a program which uses a hand-rolled interpolator (developed by a mathematician colleage) over to use the interpolators provided by scipy. I'd like to use or wrap the scipy interpolator so that it has as close as possible behavior to the old interpolator.

A key difference between the two functions is that in our original interpolator - if the input value is above or below the input range, our original interpolator will extrapolate the result. If you try this with the scipy interpolator it raises a ValueError. Consider this program as an example:

import numpy as np
from scipy import interpolate

x = np.arange(0,10)
y = np.exp(-x/3.0)
f = interpolate.interp1d(x, y)

print f(9)
print f(11) # Causes ValueError, because it's greater than max(x)

Is there a sensible way to make it so that instead of crashing, the final line will simply do a linear extrapolate, continuing the gradients defined by the first and last two points to infinity.

Note, that in the real software I'm not actually using the exp function - that's here for illustration only!

This question is related to python math numpy scipy

The answer is


I'm afraid that there is no easy to do this in Scipy to my knowledge. You can, as I'm fairly sure that you are aware, turn off the bounds errors and fill all function values beyond the range with a constant, but that doesn't really help. See this question on the mailing list for some more ideas. Maybe you could use some kind of piecewise function, but that seems like a major pain.


I did it by adding a point to my initial arrays. In this way I avoid defining self-made functions, and the linear extrapolation (in the example below: right extrapolation) looks ok.

import numpy as np  
from scipy import interp as itp  

xnew = np.linspace(0,1,51)  
x1=xold[-2]  
x2=xold[-1]  
y1=yold[-2]  
y2=yold[-1]  
right_val=y1+(xnew[-1]-x1)*(y2-y1)/(x2-x1)  
x=np.append(xold,xnew[-1])  
y=np.append(yold,right_val)  
f = itp(xnew,x,y)  

I don't have enough reputation to comment, but in case somebody is looking for an extrapolation wrapper for a linear 2d-interpolation with scipy, I have adapted the answer that was given here for the 1d interpolation.

def extrap2d(interpolator):
xs = interpolator.x
ys = interpolator.y
zs = interpolator.z
zs = np.reshape(zs, (-1, len(xs)))
def pointwise(x, y):
    if x < xs[0] or y < ys[0]:
        x1_index = np.argmin(np.abs(xs - x))
        x2_index = x1_index + 1
        y1_index = np.argmin(np.abs(ys - y))
        y2_index = y1_index + 1
        x1 = xs[x1_index]
        x2 = xs[x2_index]
        y1 = ys[y1_index]
        y2 = ys[y2_index]
        z11 = zs[x1_index, y1_index]
        z12 = zs[x1_index, y2_index]
        z21 = zs[x2_index, y1_index]
        z22 = zs[x2_index, y2_index]

        return (z11 * (x2 - x) * (y2 - y) +
        z21 * (x - x1) * (y2 - y) +
        z12 * (x2 - x) * (y - y1) +
        z22 * (x - x1) * (y - y1)
       ) / ((x2 - x1) * (y2 - y1) + 0.0)


    elif x > xs[-1] or y > ys[-1]:
        x1_index = np.argmin(np.abs(xs - x))
        x2_index = x1_index - 1
        y1_index = np.argmin(np.abs(ys - y))
        y2_index = y1_index - 1
        x1 = xs[x1_index]
        x2 = xs[x2_index]
        y1 = ys[y1_index]
        y2 = ys[y2_index]
        z11 = zs[x1_index, y1_index]
        z12 = zs[x1_index, y2_index]
        z21 = zs[x2_index, y1_index]
        z22 = zs[x2_index, y2_index]#

        return (z11 * (x2 - x) * (y2 - y) +
        z21 * (x - x1) * (y2 - y) +
        z12 * (x2 - x) * (y - y1) +
        z22 * (x - x1) * (y - y1)
        ) / ((x2 - x1) * (y2 - y1) + 0.0)
    else:
        return interpolator(x, y)
def ufunclike(xs, ys):
    if  isinstance(xs, int) or isinstance(ys, int) or isinstance(xs, np.int32) or isinstance(ys, np.int32):
        res_array = pointwise(xs, ys)
    else:
        res_array = np.zeros((len(xs), len(ys)))
        for x_c in range(len(xs)):
            res_array[x_c, :] = np.array([pointwise(xs[x_c], ys[y_c]) for y_c in range(len(ys))]).T

    return res_array
return ufunclike

I haven't commented a lot and I am aware, that the code isn't super clean. If anybody sees any errors, please let me know. In my current use-case it is working without a problem :)


You can take a look at InterpolatedUnivariateSpline

Here an example using it:

import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline

# given values
xi = np.array([0.2, 0.5, 0.7, 0.9])
yi = np.array([0.3, -0.1, 0.2, 0.1])
# positions to inter/extrapolate
x = np.linspace(0, 1, 50)
# spline order: 1 linear, 2 quadratic, 3 cubic ... 
order = 1
# do inter/extrapolation
s = InterpolatedUnivariateSpline(xi, yi, k=order)
y = s(x)

# example showing the interpolation for linear, quadratic and cubic interpolation
plt.figure()
plt.plot(xi, yi)
for order in range(1, 4):
    s = InterpolatedUnivariateSpline(xi, yi, k=order)
    y = s(x)
    plt.plot(x, y)
plt.show()

As of SciPy version 0.17.0, there is a new option for scipy.interpolate.interp1d that allows extrapolation. Simply set fill_value='extrapolate' in the call. Modifying your code in this way gives:

import numpy as np
from scipy import interpolate

x = np.arange(0,10)
y = np.exp(-x/3.0)
f = interpolate.interp1d(x, y, fill_value='extrapolate')

print f(9)
print f(11)

and the output is:

0.0497870683679
0.010394302658

What about scipy.interpolate.splrep (with degree 1 and no smoothing):

>> tck = scipy.interpolate.splrep([1, 2, 3, 4, 5], [1, 4, 9, 16, 25], k=1, s=0)
>> scipy.interpolate.splev(6, tck)
34.0

It seems to do what you want, since 34 = 25 + (25 - 16).


The below code gives you the simple extrapolation module. k is the value to which the data set y has to be extrapolated based on the data set x. The numpy module is required.

 def extrapol(k,x,y):
        xm=np.mean(x);
        ym=np.mean(y);
        sumnr=0;
        sumdr=0;
        length=len(x);
        for i in range(0,length):
            sumnr=sumnr+((x[i]-xm)*(y[i]-ym));
            sumdr=sumdr+((x[i]-xm)*(x[i]-xm));

        m=sumnr/sumdr;
        c=ym-(m*xm);
        return((m*k)+c)

It may be faster to use boolean indexing with large datasets, since the algorithm checks if every point is in outside the interval, whereas boolean indexing allows an easier and faster comparison.

For example:

# Necessary modules
import numpy as np
from scipy.interpolate import interp1d

# Original data
x = np.arange(0,10)
y = np.exp(-x/3.0)

# Interpolator class
f = interp1d(x, y)

# Output range (quite large)
xo = np.arange(0, 10, 0.001)

# Boolean indexing approach

# Generate an empty output array for "y" values
yo = np.empty_like(xo)

# Values lower than the minimum "x" are extrapolated at the same time
low = xo < f.x[0]
yo[low] =  f.y[0] + (xo[low]-f.x[0])*(f.y[1]-f.y[0])/(f.x[1]-f.x[0])

# Values higher than the maximum "x" are extrapolated at same time
high = xo > f.x[-1]
yo[high] = f.y[-1] + (xo[high]-f.x[-1])*(f.y[-1]-f.y[-2])/(f.x[-1]-f.x[-2])

# Values inside the interpolation range are interpolated directly
inside = np.logical_and(xo >= f.x[0], xo <= f.x[-1])
yo[inside] = f(xo[inside])

In my case, with a data set of 300000 points, this means an speed up from 25.8 to 0.094 seconds, this is more than 250 times faster.


Here's an alternative method that uses only the numpy package. It takes advantage of numpy's array functions, so may be faster when interpolating/extrapolating large arrays:

import numpy as np

def extrap(x, xp, yp):
    """np.interp function with linear extrapolation"""
    y = np.interp(x, xp, yp)
    y = np.where(x<xp[0], yp[0]+(x-xp[0])*(yp[0]-yp[1])/(xp[0]-xp[1]), y)
    y = np.where(x>xp[-1], yp[-1]+(x-xp[-1])*(yp[-1]-yp[-2])/(xp[-1]-xp[-2]), y)
    return y

x = np.arange(0,10)
y = np.exp(-x/3.0)
xtest = np.array((8.5,9.5))

print np.exp(-xtest/3.0)
print np.interp(xtest, x, y)
print extrap(xtest, x, y)

Edit: Mark Mikofski's suggested modification of the "extrap" function:

def extrap(x, xp, yp):
    """np.interp function with linear extrapolation"""
    y = np.interp(x, xp, yp)
    y[x < xp[0]] = yp[0] + (x[x<xp[0]]-xp[0]) * (yp[0]-yp[1]) / (xp[0]-xp[1])
    y[x > xp[-1]]= yp[-1] + (x[x>xp[-1]]-xp[-1])*(yp[-1]-yp[-2])/(xp[-1]-xp[-2])
    return y

Standard interpolate + linear extrapolate:

    def interpola(v, x, y):
        if v <= x[0]:
            return y[0]+(y[1]-y[0])/(x[1]-x[0])*(v-x[0])
        elif v >= x[-1]:
            return y[-2]+(y[-1]-y[-2])/(x[-1]-x[-2])*(v-x[-2])
        else:
            f = interp1d(x, y, kind='cubic') 
            return f(v)

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to math

How to do perspective fixing? How to pad a string with leading zeros in Python 3 How can I use "e" (Euler's number) and power operation in python 2.7 numpy max vs amax vs maximum Efficiently getting all divisors of a given number Using atan2 to find angle between two vectors How to calculate percentage when old value is ZERO Finding square root without using sqrt function? Exponentiation in Python - should I prefer ** operator instead of math.pow and math.sqrt? How do I get the total number of unique pairs of a set in the database?

Examples related to numpy

Unable to allocate array with shape and data type How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Numpy, multiply array with scalar TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" Pytorch tensor to numpy array Numpy Resize/Rescale Image what does numpy ndarray shape do? How to round a numpy array? numpy array TypeError: only integer scalar arrays can be converted to a scalar index

Examples related to scipy

Reading images in python Numpy Resize/Rescale Image How to get the indices list of all NaN value in numpy array? ImportError: cannot import name NUMPY_MKL numpy.where() detailed, step-by-step explanation / examples Scikit-learn train_test_split with indices Matplotlib: Specify format of floats for tick labels Installing NumPy and SciPy on 64-bit Windows (with Pip) Can't install Scipy through pip Plotting a fast Fourier transform in Python