[python] Are list-comprehensions and functional functions faster than "for loops"?

The following are rough guidelines and educated guesses based on experience. You should timeit or profile your concrete use case to get hard numbers, and those numbers may occasionally disagree with the below.

A list comprehension is usually a tiny bit faster than the precisely equivalent for loop (that actually builds a list), most likely because it doesn't have to look up the list and its append method on every iteration. However, a list comprehension still does a bytecode-level loop:

>>> dis.dis(<the code object for `[x for x in range(10)]`>)
 1           0 BUILD_LIST               0
             3 LOAD_FAST                0 (.0)
       >>    6 FOR_ITER                12 (to 21)
             9 STORE_FAST               1 (x)
            12 LOAD_FAST                1 (x)
            15 LIST_APPEND              2
            18 JUMP_ABSOLUTE            6
       >>   21 RETURN_VALUE

Using a list comprehension in place of a loop that doesn't build a list, nonsensically accumulating a list of meaningless values and then throwing the list away, is often slower because of the overhead of creating and extending the list. List comprehensions aren't magic that is inherently faster than a good old loop.

As for functional list processing functions: While these are written in C and probably outperform equivalent functions written in Python, they are not necessarily the fastest option. Some speed up is expected if the function is written in C too. But most cases using a lambda (or other Python function), the overhead of repeatedly setting up Python stack frames etc. eats up any savings. Simply doing the same work in-line, without function calls (e.g. a list comprehension instead of map or filter) is often slightly faster.

Suppose that in a game that I'm developing I need to draw complex and huge maps using for loops. This question would be definitely relevant, for if a list-comprehension, for example, is indeed faster, it would be a much better option in order to avoid lags (Despite the visual complexity of the code).

Chances are, if code like this isn't already fast enough when written in good non-"optimized" Python, no amount of Python level micro optimization is going to make it fast enough and you should start thinking about dropping to C. While extensive micro optimizations can often speed up Python code considerably, there is a low (in absolute terms) limit to this. Moreover, even before you hit that ceiling, it becomes simply more cost efficient (15% speedup vs. 300% speed up with the same effort) to bite the bullet and write some C.

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to for-loop

List append() in for loop Prime numbers between 1 to 100 in C Programming Language Get current index from foreach loop how to loop through each row of dataFrame in pyspark TypeScript for ... of with index / key? Is there a way in Pandas to use previous row value in dataframe.apply when previous value is also calculated in the apply? Python for and if on one line R for loop skip to next iteration ifelse How to append rows in a pandas dataframe in a for loop? What is the difference between ( for... in ) and ( for... of ) statements?

Examples related to list-comprehension

Python for and if on one line Inline for loop Are list-comprehensions and functional functions faster than "for loops"? How to frame two for loops in list comprehension python List comprehension on a nested list? One-line list comprehension: if-else variants Transpose a matrix in Python Why is there no tuple comprehension in Python? remove None value from a list without removing the 0 value Pythonic way to print list items

Examples related to map-function

Passing multiple parameters to pool.map() function in Python Are list-comprehensions and functional functions faster than "for loops"? map function for objects (instead of arrays) Mapping over values in a python dictionary Understanding the map function Java: is there a map function? Getting a map() to return a list in Python 3.x List comprehension vs map