[c#] Best way to randomize an array with .NET

What is the best way to randomize an array of strings with .NET? My array contains about 500 strings and I'd like to create a new Array with the same strings but in a random order.

Please include a C# example in your answer.

This question is related to c# .net algorithm sorting random

The answer is


You're looking for a shuffling algorithm, right?

Okay, there are two ways to do this: the clever-but-people-always-seem-to-misunderstand-it-and-get-it-wrong-so-maybe-its-not-that-clever-after-all way, and the dumb-as-rocks-but-who-cares-because-it-works way.

Dumb way

  • Create a duplicate of your first array, but tag each string should with a random number.
  • Sort the duplicate array with respect to the random number.

This algorithm works well, but make sure that your random number generator is unlikely to tag two strings with the same number. Because of the so-called Birthday Paradox, this happens more often than you might expect. Its time complexity is O(n log n).

Clever way

I'll describe this as a recursive algorithm:

To shuffle an array of size n (indices in the range [0..n-1]):

if n = 0
  • do nothing
if n > 0
  • (recursive step) shuffle the first n-1 elements of the array
  • choose a random index, x, in the range [0..n-1]
  • swap the element at index n-1 with the element at index x

The iterative equivalent is to walk an iterator through the array, swapping with random elements as you go along, but notice that you cannot swap with an element after the one that the iterator points to. This is a very common mistake, and leads to a biased shuffle.

Time complexity is O(n).


This is a complete working Console solution based on the example provided in here:

class Program
{
    static string[] words1 = new string[] { "brown", "jumped", "the", "fox", "quick" };

    static void Main()
    {
        var result = Shuffle(words1);
        foreach (var i in result)
        {
            Console.Write(i + " ");
        }
        Console.ReadKey();
    }

   static string[] Shuffle(string[] wordArray) {
        Random random = new Random();
        for (int i = wordArray.Length - 1; i > 0; i--)
        {
            int swapIndex = random.Next(i + 1);
            string temp = wordArray[i];
            wordArray[i] = wordArray[swapIndex];
            wordArray[swapIndex] = temp;
        }
        return wordArray;
    }         
}

Here's a simple way using OLINQ:

// Input array
List<String> lst = new List<string>();
for (int i = 0; i < 500; i += 1) lst.Add(i.ToString());

// Output array
List<String> lstRandom = new List<string>();

// Randomize
Random rnd = new Random();
lstRandom.AddRange(from s in lst orderby rnd.Next(100) select s);

The following implementation uses the Fisher-Yates algorithm AKA the Knuth Shuffle. It runs in O(n) time and shuffles in place, so is better performing than the 'sort by random' technique, although it is more lines of code. See here for some comparative performance measurements. I have used System.Random, which is fine for non-cryptographic purposes.*

static class RandomExtensions
{
    public static void Shuffle<T> (this Random rng, T[] array)
    {
        int n = array.Length;
        while (n > 1) 
        {
            int k = rng.Next(n--);
            T temp = array[n];
            array[n] = array[k];
            array[k] = temp;
        }
    }
}

Usage:

var array = new int[] {1, 2, 3, 4};
var rng = new Random();
rng.Shuffle(array);
rng.Shuffle(array); // different order from first call to Shuffle

* For longer arrays, in order to make the (extremely large) number of permutations equally probable it would be necessary to run a pseudo-random number generator (PRNG) through many iterations for each swap to produce enough entropy. For a 500-element array only a very small fraction of the possible 500! permutations will be possible to obtain using a PRNG. Nevertheless, the Fisher-Yates algorithm is unbiased and therefore the shuffle will be as good as the RNG you use.


Just thinking off the top of my head, you could do this:

public string[] Randomize(string[] input)
{
  List<string> inputList = input.ToList();
  string[] output = new string[input.Length];
  Random randomizer = new Random();
  int i = 0;

  while (inputList.Count > 0)
  {
    int index = r.Next(inputList.Count);
    output[i++] = inputList[index];
    inputList.RemoveAt(index);
  }

  return (output);
}

Randomizing the array is intensive as you have to shift around a bunch of strings. Why not just randomly read from the array? In the worst case you could even create a wrapper class with a getNextString(). If you really do need to create a random array then you could do something like

for i = 0 -> i= array.length * 5
   swap two strings in random places

The *5 is arbitrary.


Generate an array of random floats or ints of the same length. Sort that array, and do corresponding swaps on your target array.

This yields a truly independent sort.


You can also make an extention method out of Matt Howells. Example.

   namespace System
    {
        public static class MSSystemExtenstions
        {
            private static Random rng = new Random();
            public static void Shuffle<T>(this T[] array)
            {
                rng = new Random();
                int n = array.Length;
                while (n > 1)
                {
                    int k = rng.Next(n);
                    n--;
                    T temp = array[n];
                    array[n] = array[k];
                    array[k] = temp;
                }
            }
        }
    }

Then you can just use it like:

        string[] names = new string[] {
                "Aaron Moline1", 
                "Aaron Moline2", 
                "Aaron Moline3", 
                "Aaron Moline4", 
                "Aaron Moline5", 
                "Aaron Moline6", 
                "Aaron Moline7", 
                "Aaron Moline8", 
                "Aaron Moline9", 
            };
        names.Shuffle<string>();

Jacco, your solution ising a custom IComparer isn't safe. The Sort routines require the comparer to conform to several requirements in order to function properly. First among them is consistency. If the comparer is called on the same pair of objects, it must always return the same result. (the comparison must also be transitive).

Failure to meet these requirements can cause any number of problems in the sorting routine including the possibility of an infinite loop.

Regarding the solutions that associate a random numeric value with each entry and then sort by that value, these are lead to an inherent bias in the output because any time two entries are assigned the same numeric value, the randomness of the output will be compromised. (In a "stable" sort routine, whichever is first in the input will be first in the output. Array.Sort doesn't happen to be stable, but there is still a bias based on the partitioning done by the Quicksort algorithm).

You need to do some thinking about what level of randomness you require. If you are running a poker site where you need cryptographic levels of randomness to protect against a determined attacker you have very different requirements from someone who just wants to randomize a song playlist.

For song-list shuffling, there's no problem using a seeded PRNG (like System.Random). For a poker site, it's not even an option and you need to think about the problem a lot harder than anyone is going to do for you on stackoverflow. (using a cryptographic RNG is only the beginning, you need to ensure that your algorithm doesn't introduce a bias, that you have sufficient sources of entropy, and that you don't expose any internal state that would compromise subsequent randomness).


Random r = new Random();
List<string> list = new List(originalArray);
List<string> randomStrings = new List();

while(list.Count > 0)
{
int i = r.Random(list.Count);
randomStrings.Add(list[i]);
list.RemoveAt(i);
}

This algorithm is simple but not efficient, O(N2). All the "order by" algorithms are typically O(N log N). It probably doesn't make a difference below hundreds of thousands of elements but it would for large lists.

var stringlist = ... // add your values to stringlist

var r = new Random();

var res = new List<string>(stringlist.Count);

while (stringlist.Count >0)
{
   var i = r.Next(stringlist.Count);
   res.Add(stringlist[i]);
   stringlist.RemoveAt(i);
}

The reason why it's O(N2) is subtle: List.RemoveAt() is a O(N) operation unless you remove in order from the end.


private ArrayList ShuffleArrayList(ArrayList source)
{
    ArrayList sortedList = new ArrayList();
    Random generator = new Random();

    while (source.Count > 0)
    {
        int position = generator.Next(source.Count);
        sortedList.Add(source[position]);
        source.RemoveAt(position);
    }  
    return sortedList;
}

You don't need complicated algorithms.

Just one simple line:

Random random = new Random();
array.ToList().Sort((x, y) => random.Next(-1, 1)).ToArray();

Note that we need to convert the Array to a List first, if you don't use List in the first place.

Also, mind that this is not efficient for very large arrays! Otherwise it's clean & simple.


Ok, this is clearly a bump from my side (apologizes...), but I often use a quite general and cryptographically strong method.

public static class EnumerableExtensions
{
    static readonly RNGCryptoServiceProvider RngCryptoServiceProvider = new RNGCryptoServiceProvider();
    public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> enumerable)
    {
        var randomIntegerBuffer = new byte[4];
        Func<int> rand = () =>
                             {
                                 RngCryptoServiceProvider.GetBytes(randomIntegerBuffer);
                                 return BitConverter.ToInt32(randomIntegerBuffer, 0);
                             };
        return from item in enumerable
               let rec = new {item, rnd = rand()}
               orderby rec.rnd
               select rec.item;
    }
}

Shuffle() is an extension on any IEnumerable so getting, say, numbers from 0 to 1000 in random order in a list can be done with

Enumerable.Range(0,1000).Shuffle().ToList()

This method also wont give any surprises when it comes to sorting, since the sort value is generated and remembered exactly once per element in the sequence.


This post has already been pretty well answered - use a Durstenfeld implementation of the Fisher-Yates shuffle for a fast and unbiased result. There have even been some implementations posted, though I note some are actually incorrect.

I wrote a couple of posts a while back about implementing full and partial shuffles using this technique, and (this second link is where I'm hoping to add value) also a follow-up post about how to check whether your implementation is unbiased, which can be used to check any shuffle algorithm. You can see at the end of the second post the effect of a simple mistake in the random number selection can make.


        int[] numbers = {0,1,2,3,4,5,6,7,8,9};
        List<int> numList = new List<int>();
        numList.AddRange(numbers);

        Console.WriteLine("Original Order");
        for (int i = 0; i < numList.Count; i++)
        {
            Console.Write(String.Format("{0} ",numList[i]));
        }

        Random random = new Random();
        Console.WriteLine("\n\nRandom Order");
        for (int i = 0; i < numList.Capacity; i++)
        {
            int randomIndex = random.Next(numList.Count);
            Console.Write(String.Format("{0} ", numList[randomIndex]));
            numList.RemoveAt(randomIndex);
        }
        Console.ReadLine();

Examples related to c#

How can I convert this one line of ActionScript to C#? Microsoft Advertising SDK doesn't deliverer ads How to use a global array in C#? How to correctly write async method? C# - insert values from file into two arrays Uploading into folder in FTP? Are these methods thread safe? dotnet ef not found in .NET Core 3 HTTP Error 500.30 - ANCM In-Process Start Failure Best way to "push" into C# array

Examples related to .net

You must add a reference to assembly 'netstandard, Version=2.0.0.0 How to use Bootstrap 4 in ASP.NET Core No authenticationScheme was specified, and there was no DefaultChallengeScheme found with default authentification and custom authorization .net Core 2.0 - Package was restored using .NetFramework 4.6.1 instead of target framework .netCore 2.0. The package may not be fully compatible Update .NET web service to use TLS 1.2 EF Core add-migration Build Failed What is the difference between .NET Core and .NET Standard Class Library project types? Visual Studio 2017 - Could not load file or assembly 'System.Runtime, Version=4.1.0.0' or one of its dependencies Nuget connection attempt failed "Unable to load the service index for source" Token based authentication in Web API without any user interface

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to sorting

Sort Array of object by object field in Angular 6 Sorting a list with stream.sorted() in Java How to sort dates from Oldest to Newest in Excel? how to sort pandas dataframe from one column Reverse a comparator in Java 8 Find the unique values in a column and then sort them pandas groupby sort within groups pandas groupby sort descending order Efficiently sorting a numpy array in descending order? Swift: Sort array of objects alphabetically

Examples related to random

How can I get a random number in Kotlin? scikit-learn random state in splitting dataset Random number between 0 and 1 in python In python, what is the difference between random.uniform() and random.random()? Generate random colors (RGB) Random state (Pseudo-random number) in Scikit learn How does one generate a random number in Apple's Swift language? How to generate a random string of a fixed length in Go? Generate 'n' unique random numbers within a range What does random.sample() method in python do?