[python] How do I parse a string to a float or int?

In Python, how can I parse a numeric string like "545.2222" to its corresponding float value, 545.2222? Or parse the string "31" to an integer, 31?

I just want to know how to parse a float str to a float, and (separately) an int str to an int.

This question is related to python parsing floating-point type-conversion integer

The answer is


a = int(float(a)) if int(float(a)) == float(a) else float(a)

float(x) if '.' in x else int(x)

Users codelogic and harley are correct, but keep in mind if you know the string is an integer (for example, 545) you can call int("545") without first casting to float.

If your strings are in a list, you could use the map function as well.

>>> x = ["545.0", "545.6", "999.2"]
>>> map(float, x)
[545.0, 545.60000000000002, 999.20000000000005]
>>>

It is only good if they're all the same type.


Localization and commas

You should consider the possibility of commas in the string representation of a number, for cases like float("545,545.2222") which throws an exception. Instead, use methods in locale to convert the strings to numbers and interpret commas correctly. The locale.atof method converts to a float in one step once the locale has been set for the desired number convention.

Example 1 -- United States number conventions

In the United States and the UK, commas can be used as a thousands separator. In this example with American locale, the comma is handled properly as a separator:

>>> import locale
>>> a = u'545,545.2222'
>>> locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
'en_US.UTF-8'
>>> locale.atof(a)
545545.2222
>>> int(locale.atof(a))
545545
>>>

Example 2 -- European number conventions

In the majority of countries of the world, commas are used for decimal marks instead of periods. In this example with French locale, the comma is correctly handled as a decimal mark:

>>> import locale
>>> b = u'545,2222'
>>> locale.setlocale(locale.LC_ALL, 'fr_FR')
'fr_FR'
>>> locale.atof(b)
545.2222

The method locale.atoi is also available, but the argument should be an integer.


Handles hex, octal, binary, decimal, and float

This solution will handle all of the string conventions for numbers (all that I know about).

def to_number(n):
    ''' Convert any number representation to a number 
    This covers: float, decimal, hex, and octal numbers.
    '''

    try:
        return int(str(n), 0)
    except:
        try:
            # python 3 doesn't accept "010" as a valid octal.  You must use the
            # '0o' prefix
            return int('0o' + n, 0)
        except:
            return float(n)

This test case output illustrates what I'm talking about.

======================== CAPTURED OUTPUT =========================
to_number(3735928559)   = 3735928559 == 3735928559
to_number("0xFEEDFACE") = 4277009102 == 4277009102
to_number("0x0")        =          0 ==          0
to_number(100)          =        100 ==        100
to_number("42")         =         42 ==         42
to_number(8)            =          8 ==          8
to_number("0o20")       =         16 ==         16
to_number("020")        =         16 ==         16
to_number(3.14)         =       3.14 ==       3.14
to_number("2.72")       =       2.72 ==       2.72
to_number("1e3")        =     1000.0 ==       1000
to_number(0.001)        =      0.001 ==      0.001
to_number("0xA")        =         10 ==         10
to_number("012")        =         10 ==         10
to_number("0o12")       =         10 ==         10
to_number("0b01010")    =         10 ==         10
to_number("10")         =         10 ==         10
to_number("10.0")       =       10.0 ==         10
to_number("1e1")        =       10.0 ==         10

Here is the test:

class test_to_number(unittest.TestCase):

    def test_hex(self):
        # All of the following should be converted to an integer
        #
        values = [

                 #          HEX
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (0xDEADBEEF  , 3735928559), # Hex
                ("0xFEEDFACE", 4277009102), # Hex
                ("0x0"       ,          0), # Hex

                 #        Decimals
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (100         ,        100), # Decimal
                ("42"        ,         42), # Decimal
            ]



        values += [
                 #        Octals
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (0o10        ,          8), # Octal
                ("0o20"      ,         16), # Octal
                ("020"       ,         16), # Octal
            ]


        values += [
                 #        Floats
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (3.14        ,       3.14), # Float
                ("2.72"      ,       2.72), # Float
                ("1e3"       ,       1000), # Float
                (1e-3        ,      0.001), # Float
            ]

        values += [
                 #        All ints
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                ("0xA"       ,         10), 
                ("012"       ,         10), 
                ("0o12"      ,         10), 
                ("0b01010"   ,         10), 
                ("10"        ,         10), 
                ("10.0"      ,         10), 
                ("1e1"       ,         10), 
            ]

        for _input, expected in values:
            value = to_number(_input)

            if isinstance(_input, str):
                cmd = 'to_number("{}")'.format(_input)
            else:
                cmd = 'to_number({})'.format(_input)

            print("{:23} = {:10} == {:10}".format(cmd, value, expected))
            self.assertEqual(value, expected)

In Python, how can I parse a numeric string like "545.2222" to its corresponding float value, 542.2222? Or parse the string "31" to an integer, 31? I just want to know how to parse a float string to a float, and (separately) an int string to an int.

It's good that you ask to do these separately. If you're mixing them, you may be setting yourself up for problems later. The simple answer is:

"545.2222" to float:

>>> float("545.2222")
545.2222

"31" to an integer:

>>> int("31")
31

Other conversions, ints to and from strings and literals:

Conversions from various bases, and you should know the base in advance (10 is the default). Note you can prefix them with what Python expects for its literals (see below) or remove the prefix:

>>> int("0b11111", 2)
31
>>> int("11111", 2)
31
>>> int('0o37', 8)
31
>>> int('37', 8)
31
>>> int('0x1f', 16)
31
>>> int('1f', 16)
31

If you don't know the base in advance, but you do know they will have the correct prefix, Python can infer this for you if you pass 0 as the base:

>>> int("0b11111", 0)
31
>>> int('0o37', 0)
31
>>> int('0x1f', 0)
31

Non-Decimal (i.e. Integer) Literals from other Bases

If your motivation is to have your own code clearly represent hard-coded specific values, however, you may not need to convert from the bases - you can let Python do it for you automatically with the correct syntax.

You can use the apropos prefixes to get automatic conversion to integers with the following literals. These are valid for Python 2 and 3:

Binary, prefix 0b

>>> 0b11111
31

Octal, prefix 0o

>>> 0o37
31

Hexadecimal, prefix 0x

>>> 0x1f
31

This can be useful when describing binary flags, file permissions in code, or hex values for colors - for example, note no quotes:

>>> 0b10101 # binary flags
21
>>> 0o755 # read, write, execute perms for owner, read & ex for group & others
493
>>> 0xffffff # the color, white, max values for red, green, and blue
16777215

Making ambiguous Python 2 octals compatible with Python 3

If you see an integer that starts with a 0, in Python 2, this is (deprecated) octal syntax.

>>> 037
31

It is bad because it looks like the value should be 37. So in Python 3, it now raises a SyntaxError:

>>> 037
  File "<stdin>", line 1
    037
      ^
SyntaxError: invalid token

Convert your Python 2 octals to octals that work in both 2 and 3 with the 0o prefix:

>>> 0o37
31

To typecast in python use the constructor funtions of the type, passing the string (or whatever value you are trying to cast) as a parameter.

For example:

>>>float("23.333")
   23.333

Behind the scenes, python is calling the objects __float__ method, which should return a float representation of the parameter. This is especially powerful, as you can define your own types (using classes) with a __float__ method so that it can be casted into a float using float(myobject).


def num(s):
    try:
        return int(s)
    except ValueError:
        return float(s)

Here's another interpretation of your question (hint: it's vague). It's possible you're looking for something like this:

def parseIntOrFloat( aString ):
    return eval( aString )

It works like this...

>>> parseIntOrFloat("545.2222")
545.22220000000004
>>> parseIntOrFloat("545")
545

Theoretically, there's an injection vulnerability. The string could, for example be "import os; os.abort()". Without any background on where the string comes from, however, the possibility is theoretical speculation. Since the question is vague, it's not at all clear if this vulnerability actually exists or not.


This is a corrected version of https://stackoverflow.com/a/33017514/5973334

This will try to parse a string and return either int or float depending on what the string represents. It might rise parsing exceptions or have some unexpected behaviour.

  def get_int_or_float(v):
        number_as_float = float(v)
        number_as_int = int(number_as_float)
        return number_as_int if number_as_float == number_as_int else 
        number_as_float

The question seems a little bit old. But let me suggest a function, parseStr, which makes something similar, that is, returns integer or float and if a given ASCII string cannot be converted to none of them it returns it untouched. The code of course might be adjusted to do only what you want:

   >>> import string
   >>> parseStr = lambda x: x.isalpha() and x or x.isdigit() and \
   ...                      int(x) or x.isalnum() and x or \
   ...                      len(set(string.punctuation).intersection(x)) == 1 and \
   ...                      x.count('.') == 1 and float(x) or x
   >>> parseStr('123')
   123
   >>> parseStr('123.3')
   123.3
   >>> parseStr('3HC1')
   '3HC1'
   >>> parseStr('12.e5')
   1200000.0
   >>> parseStr('12$5')
   '12$5'
   >>> parseStr('12.2.2')
   '12.2.2'

def num(s):
    try:
        return int(s)
    except ValueError:
        return float(s)

def get_int_or_float(v):
    number_as_float = float(v)
    number_as_int = int(number_as_float)
    return number_as_int if number_as_float == number_as_int else number_as_float

To typecast in python use the constructor funtions of the type, passing the string (or whatever value you are trying to cast) as a parameter.

For example:

>>>float("23.333")
   23.333

Behind the scenes, python is calling the objects __float__ method, which should return a float representation of the parameter. This is especially powerful, as you can define your own types (using classes) with a __float__ method so that it can be casted into a float using float(myobject).


By using int and float methods we can convert a string to integer and floats.

s="45.8"
print(float(s))

y='67'
print(int(y))

def num(s):
    """num(s)
    num(3),num(3.7)-->3
    num('3')-->3, num('3.7')-->3.7
    num('3,700')-->ValueError
    num('3a'),num('a3'),-->ValueError
    num('3e4') --> 30000.0
    """
    try:
        return int(s)
    except ValueError:
        try:
            return float(s)
        except ValueError:
            raise ValueError('argument is not a string of number')

In Python, how can I parse a numeric string like "545.2222" to its corresponding float value, 542.2222? Or parse the string "31" to an integer, 31? I just want to know how to parse a float string to a float, and (separately) an int string to an int.

It's good that you ask to do these separately. If you're mixing them, you may be setting yourself up for problems later. The simple answer is:

"545.2222" to float:

>>> float("545.2222")
545.2222

"31" to an integer:

>>> int("31")
31

Other conversions, ints to and from strings and literals:

Conversions from various bases, and you should know the base in advance (10 is the default). Note you can prefix them with what Python expects for its literals (see below) or remove the prefix:

>>> int("0b11111", 2)
31
>>> int("11111", 2)
31
>>> int('0o37', 8)
31
>>> int('37', 8)
31
>>> int('0x1f', 16)
31
>>> int('1f', 16)
31

If you don't know the base in advance, but you do know they will have the correct prefix, Python can infer this for you if you pass 0 as the base:

>>> int("0b11111", 0)
31
>>> int('0o37', 0)
31
>>> int('0x1f', 0)
31

Non-Decimal (i.e. Integer) Literals from other Bases

If your motivation is to have your own code clearly represent hard-coded specific values, however, you may not need to convert from the bases - you can let Python do it for you automatically with the correct syntax.

You can use the apropos prefixes to get automatic conversion to integers with the following literals. These are valid for Python 2 and 3:

Binary, prefix 0b

>>> 0b11111
31

Octal, prefix 0o

>>> 0o37
31

Hexadecimal, prefix 0x

>>> 0x1f
31

This can be useful when describing binary flags, file permissions in code, or hex values for colors - for example, note no quotes:

>>> 0b10101 # binary flags
21
>>> 0o755 # read, write, execute perms for owner, read & ex for group & others
493
>>> 0xffffff # the color, white, max values for red, green, and blue
16777215

Making ambiguous Python 2 octals compatible with Python 3

If you see an integer that starts with a 0, in Python 2, this is (deprecated) octal syntax.

>>> 037
31

It is bad because it looks like the value should be 37. So in Python 3, it now raises a SyntaxError:

>>> 037
  File "<stdin>", line 1
    037
      ^
SyntaxError: invalid token

Convert your Python 2 octals to octals that work in both 2 and 3 with the 0o prefix:

>>> 0o37
31

float(x) if '.' in x else int(x)

Python method to check if a string is a float:

def is_float(value):
  try:
    float(value)
    return True
  except:
    return False

A longer and more accurate name for this function could be: is_convertible_to_float(value)

What is, and is not a float in Python may surprise you:

val                   is_float(val) Note
--------------------  ----------   --------------------------------
""                    False        Blank string
"127"                 True         Passed string
True                  True         Pure sweet Truth
"True"                False        Vile contemptible lie
False                 True         So false it becomes true
"123.456"             True         Decimal
"      -127    "      True         Spaces trimmed
"\t\n12\r\n"          True         whitespace ignored
"NaN"                 True         Not a number
"NaNanananaBATMAN"    False        I am Batman
"-iNF"                True         Negative infinity
"123.E4"              True         Exponential notation
".1"                  True         mantissa only
"1,234"               False        Commas gtfo
u'\x30'               True         Unicode is fine.
"NULL"                False        Null is not special
0x3fade               True         Hexadecimal
"6e7777777777777"     True         Shrunk to infinity
"1.797693e+308"       True         This is max value
"infinity"            True         Same as inf
"infinityandBEYOND"   False        Extra characters wreck it
"12.34.56"            False        Only one dot allowed
u'?'                 False        Japanese '4' is not a float.
"#56"                 False        Pound sign
"56%"                 False        Percent of what?
"0E0"                 True         Exponential, move dot 0 places
0**0                  True         0___0  Exponentiation
"-5e-5"               True         Raise to a negative number
"+1e1"                True         Plus is OK with exponent
"+1e1^5"              False        Fancy exponent not interpreted
"+1e1.3"              False        No decimals in exponent
"-+1"                 False        Make up your mind
"(1)"                 False        Parenthesis is bad

You think you know what numbers are? You are not so good as you think! Not big surprise.

Don't use this code on life-critical software!

Catching broad exceptions this way, killing canaries and gobbling the exception creates a tiny chance that a valid float as string will return false. The float(...) line of code can failed for any of a thousand reasons that have nothing to do with the contents of the string. But if you're writing life-critical software in a duck-typing prototype language like Python, then you've got much larger problems.


I am surprised nobody mentioned regex because sometimes string must be prepared and normalized before casting to number

import re
def parseNumber(value, as_int=False):
    try:
        number = float(re.sub('[^.\-\d]', '', value))
        if as_int:
            return int(number + 0.5)
        else:
            return number
    except ValueError:
        return float('nan')  # or None if you wish

usage:

parseNumber('13,345')
> 13345.0

parseNumber('- 123 000')
> -123000.0

parseNumber('99999\n')
> 99999.0

and by the way, something to verify you have a number:

import numbers
def is_number(value):
    return isinstance(value, numbers.Number)
    # will work with int, float, long, Decimal

float("545.2222") and int(float("545.2222"))


The YAML parser can help you figure out what datatype your string is. Use yaml.load(), and then you can use type(result) to test for type:

>>> import yaml

>>> a = "545.2222"
>>> result = yaml.load(a)
>>> result
545.22220000000004
>>> type(result)
<type 'float'>

>>> b = "31"
>>> result = yaml.load(b)
>>> result
31
>>> type(result)
<type 'int'>

>>> c = "HI"
>>> result = yaml.load(c)
>>> result
'HI'
>>> type(result)
<type 'str'>

def get_int_or_float(v):
    number_as_float = float(v)
    number_as_int = int(number_as_float)
    return number_as_int if number_as_float == number_as_int else number_as_float

Use:

>>> str_float = "545.2222"
>>> float(str_float)
545.2222
>>> type(_) # Check its type
<type 'float'>

>>> str_int = "31"
>>> int(str_int)
31
>>> type(_) # Check its type
<type 'int'>

I use this function for that

import ast

def parse_str(s):
   try:
      return ast.literal_eval(str(s))
   except:
      return

It will convert the string to its type

value = parse_str('1')  # Returns Integer
value = parse_str('1.5')  # Returns Float

Pass your string to this function:

def string_to_number(str):
  if("." in str):
    try:
      res = float(str)
    except:
      res = str  
  elif(str.isdigit()):
    res = int(str)
  else:
    res = str
  return(res)

It will return int, float or string depending on what was passed.

string that is an int

print(type(string_to_number("124")))
<class 'int'>

string that is a float

print(type(string_to_number("12.4")))
<class 'float'>

string that is a string

print(type(string_to_number("hello")))
<class 'str'>

string that looks like a float

print(type(string_to_number("hel.lo")))
<class 'str'>

By using int and float methods we can convert a string to integer and floats.

s="45.8"
print(float(s))

y='67'
print(int(y))

float("545.2222") and int(float("545.2222"))


Python method to check if a string is a float:

def is_float(value):
  try:
    float(value)
    return True
  except:
    return False

A longer and more accurate name for this function could be: is_convertible_to_float(value)

What is, and is not a float in Python may surprise you:

val                   is_float(val) Note
--------------------  ----------   --------------------------------
""                    False        Blank string
"127"                 True         Passed string
True                  True         Pure sweet Truth
"True"                False        Vile contemptible lie
False                 True         So false it becomes true
"123.456"             True         Decimal
"      -127    "      True         Spaces trimmed
"\t\n12\r\n"          True         whitespace ignored
"NaN"                 True         Not a number
"NaNanananaBATMAN"    False        I am Batman
"-iNF"                True         Negative infinity
"123.E4"              True         Exponential notation
".1"                  True         mantissa only
"1,234"               False        Commas gtfo
u'\x30'               True         Unicode is fine.
"NULL"                False        Null is not special
0x3fade               True         Hexadecimal
"6e7777777777777"     True         Shrunk to infinity
"1.797693e+308"       True         This is max value
"infinity"            True         Same as inf
"infinityandBEYOND"   False        Extra characters wreck it
"12.34.56"            False        Only one dot allowed
u'?'                 False        Japanese '4' is not a float.
"#56"                 False        Pound sign
"56%"                 False        Percent of what?
"0E0"                 True         Exponential, move dot 0 places
0**0                  True         0___0  Exponentiation
"-5e-5"               True         Raise to a negative number
"+1e1"                True         Plus is OK with exponent
"+1e1^5"              False        Fancy exponent not interpreted
"+1e1.3"              False        No decimals in exponent
"-+1"                 False        Make up your mind
"(1)"                 False        Parenthesis is bad

You think you know what numbers are? You are not so good as you think! Not big surprise.

Don't use this code on life-critical software!

Catching broad exceptions this way, killing canaries and gobbling the exception creates a tiny chance that a valid float as string will return false. The float(...) line of code can failed for any of a thousand reasons that have nothing to do with the contents of the string. But if you're writing life-critical software in a duck-typing prototype language like Python, then you've got much larger problems.


def num(s):
    """num(s)
    num(3),num(3.7)-->3
    num('3')-->3, num('3.7')-->3.7
    num('3,700')-->ValueError
    num('3a'),num('a3'),-->ValueError
    num('3e4') --> 30000.0
    """
    try:
        return int(s)
    except ValueError:
        try:
            return float(s)
        except ValueError:
            raise ValueError('argument is not a string of number')

for number and char together :

string_for_int = "498 results should get"
string_for_float = "498.45645765 results should get"

first import re:

 import re

 #for get integer part:
 print(int(re.search(r'\d+', string_for_int).group())) #498

 #for get float part:
 print(float(re.search(r'\d+\.\d+', string_for_float).group())) #498.45645765

for easy model :

value1 = "10"
value2 = "10.2"
print(int(value1)) #10
print(float(value2)) #10.2

float("545.2222") and int(float("545.2222"))


This is a function which will convert any object (not just str) to int or float, based on if the actual string supplied looks like int or float. Further if it's an object which has both __float and __int__ methods, it defaults to using __float__

def conv_to_num(x, num_type='asis'):
    '''Converts an object to a number if possible.
    num_type: int, float, 'asis'
    Defaults to floating point in case of ambiguity.
    '''
    import numbers

    is_num, is_str, is_other = [False]*3

    if isinstance(x, numbers.Number):
        is_num = True
    elif isinstance(x, str):
        is_str = True

    is_other = not any([is_num, is_str])

    if is_num:
        res = x
    elif is_str:
        is_float, is_int, is_char = [False]*3
        try:
            res = float(x)
            if '.' in x:
                is_float = True
            else:
                is_int = True
        except ValueError:
            res = x
            is_char = True

    else:
        if num_type == 'asis':
            funcs = [int, float]
        else:
            funcs = [num_type]

        for func in funcs:
            try:
                res = func(x)
                break
            except TypeError:
                continue
        else:
            res = x

def num(s):
    try:
        return int(s)
    except ValueError:
        return float(s)

You need to take into account rounding to do this properly.

I.e. int(5.1) => 5 int(5.6) => 5 -- wrong, should be 6 so we do int(5.6 + 0.5) => 6

def convert(n):
    try:
        return int(n)
    except ValueError:
        return float(n + 0.5)

a = int(float(a)) if int(float(a)) == float(a) else float(a)

If you aren't averse to third-party modules, you could check out the fastnumbers module. It provides a function called fast_real that does exactly what this question is asking for and does it faster than a pure-Python implementation:

>>> from fastnumbers import fast_real
>>> fast_real("545.2222")
545.2222
>>> type(fast_real("545.2222"))
float
>>> fast_real("31")
31
>>> type(fast_real("31"))
int

Here's another interpretation of your question (hint: it's vague). It's possible you're looking for something like this:

def parseIntOrFloat( aString ):
    return eval( aString )

It works like this...

>>> parseIntOrFloat("545.2222")
545.22220000000004
>>> parseIntOrFloat("545")
545

Theoretically, there's an injection vulnerability. The string could, for example be "import os; os.abort()". Without any background on where the string comes from, however, the possibility is theoretical speculation. Since the question is vague, it's not at all clear if this vulnerability actually exists or not.


Users codelogic and harley are correct, but keep in mind if you know the string is an integer (for example, 545) you can call int("545") without first casting to float.

If your strings are in a list, you could use the map function as well.

>>> x = ["545.0", "545.6", "999.2"]
>>> map(float, x)
[545.0, 545.60000000000002, 999.20000000000005]
>>>

It is only good if they're all the same type.


You need to take into account rounding to do this properly.

I.e. int(5.1) => 5 int(5.6) => 5 -- wrong, should be 6 so we do int(5.6 + 0.5) => 6

def convert(n):
    try:
        return int(n)
    except ValueError:
        return float(n + 0.5)

This is another method which deserves to be mentioned here, ast.literal_eval:

This can be used for safely evaluating strings containing Python expressions from untrusted sources without the need to parse the values oneself.

That is, a safe 'eval'

>>> import ast
>>> ast.literal_eval("545.2222")
545.2222
>>> ast.literal_eval("31")
31

Users codelogic and harley are correct, but keep in mind if you know the string is an integer (for example, 545) you can call int("545") without first casting to float.

If your strings are in a list, you could use the map function as well.

>>> x = ["545.0", "545.6", "999.2"]
>>> map(float, x)
[545.0, 545.60000000000002, 999.20000000000005]
>>>

It is only good if they're all the same type.


Use:

def num(s):
    try:
        for each in s:
            yield int(each)
    except ValueError:
        yield float(each)
a = num(["123.55","345","44"])
print a.next()
print a.next()

This is the most Pythonic way I could come up with.


Users codelogic and harley are correct, but keep in mind if you know the string is an integer (for example, 545) you can call int("545") without first casting to float.

If your strings are in a list, you could use the map function as well.

>>> x = ["545.0", "545.6", "999.2"]
>>> map(float, x)
[545.0, 545.60000000000002, 999.20000000000005]
>>>

It is only good if they're all the same type.


The YAML parser can help you figure out what datatype your string is. Use yaml.load(), and then you can use type(result) to test for type:

>>> import yaml

>>> a = "545.2222"
>>> result = yaml.load(a)
>>> result
545.22220000000004
>>> type(result)
<type 'float'>

>>> b = "31"
>>> result = yaml.load(b)
>>> result
31
>>> type(result)
<type 'int'>

>>> c = "HI"
>>> result = yaml.load(c)
>>> result
'HI'
>>> type(result)
<type 'str'>

float("545.2222") and int(float("545.2222"))


float(x) if '.' in x else int(x)

Pass your string to this function:

def string_to_number(str):
  if("." in str):
    try:
      res = float(str)
    except:
      res = str  
  elif(str.isdigit()):
    res = int(str)
  else:
    res = str
  return(res)

It will return int, float or string depending on what was passed.

string that is an int

print(type(string_to_number("124")))
<class 'int'>

string that is a float

print(type(string_to_number("12.4")))
<class 'float'>

string that is a string

print(type(string_to_number("hello")))
<class 'str'>

string that looks like a float

print(type(string_to_number("hel.lo")))
<class 'str'>

for number and char together :

string_for_int = "498 results should get"
string_for_float = "498.45645765 results should get"

first import re:

 import re

 #for get integer part:
 print(int(re.search(r'\d+', string_for_int).group())) #498

 #for get float part:
 print(float(re.search(r'\d+\.\d+', string_for_float).group())) #498.45645765

for easy model :

value1 = "10"
value2 = "10.2"
print(int(value1)) #10
print(float(value2)) #10.2

This is a corrected version of https://stackoverflow.com/a/33017514/5973334

This will try to parse a string and return either int or float depending on what the string represents. It might rise parsing exceptions or have some unexpected behaviour.

  def get_int_or_float(v):
        number_as_float = float(v)
        number_as_int = int(number_as_float)
        return number_as_int if number_as_float == number_as_int else 
        number_as_float

The question seems a little bit old. But let me suggest a function, parseStr, which makes something similar, that is, returns integer or float and if a given ASCII string cannot be converted to none of them it returns it untouched. The code of course might be adjusted to do only what you want:

   >>> import string
   >>> parseStr = lambda x: x.isalpha() and x or x.isdigit() and \
   ...                      int(x) or x.isalnum() and x or \
   ...                      len(set(string.punctuation).intersection(x)) == 1 and \
   ...                      x.count('.') == 1 and float(x) or x
   >>> parseStr('123')
   123
   >>> parseStr('123.3')
   123.3
   >>> parseStr('3HC1')
   '3HC1'
   >>> parseStr('12.e5')
   1200000.0
   >>> parseStr('12$5')
   '12$5'
   >>> parseStr('12.2.2')
   '12.2.2'

This is another method which deserves to be mentioned here, ast.literal_eval:

This can be used for safely evaluating strings containing Python expressions from untrusted sources without the need to parse the values oneself.

That is, a safe 'eval'

>>> import ast
>>> ast.literal_eval("545.2222")
545.2222
>>> ast.literal_eval("31")
31

Handles hex, octal, binary, decimal, and float

This solution will handle all of the string conventions for numbers (all that I know about).

def to_number(n):
    ''' Convert any number representation to a number 
    This covers: float, decimal, hex, and octal numbers.
    '''

    try:
        return int(str(n), 0)
    except:
        try:
            # python 3 doesn't accept "010" as a valid octal.  You must use the
            # '0o' prefix
            return int('0o' + n, 0)
        except:
            return float(n)

This test case output illustrates what I'm talking about.

======================== CAPTURED OUTPUT =========================
to_number(3735928559)   = 3735928559 == 3735928559
to_number("0xFEEDFACE") = 4277009102 == 4277009102
to_number("0x0")        =          0 ==          0
to_number(100)          =        100 ==        100
to_number("42")         =         42 ==         42
to_number(8)            =          8 ==          8
to_number("0o20")       =         16 ==         16
to_number("020")        =         16 ==         16
to_number(3.14)         =       3.14 ==       3.14
to_number("2.72")       =       2.72 ==       2.72
to_number("1e3")        =     1000.0 ==       1000
to_number(0.001)        =      0.001 ==      0.001
to_number("0xA")        =         10 ==         10
to_number("012")        =         10 ==         10
to_number("0o12")       =         10 ==         10
to_number("0b01010")    =         10 ==         10
to_number("10")         =         10 ==         10
to_number("10.0")       =       10.0 ==         10
to_number("1e1")        =       10.0 ==         10

Here is the test:

class test_to_number(unittest.TestCase):

    def test_hex(self):
        # All of the following should be converted to an integer
        #
        values = [

                 #          HEX
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (0xDEADBEEF  , 3735928559), # Hex
                ("0xFEEDFACE", 4277009102), # Hex
                ("0x0"       ,          0), # Hex

                 #        Decimals
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (100         ,        100), # Decimal
                ("42"        ,         42), # Decimal
            ]



        values += [
                 #        Octals
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (0o10        ,          8), # Octal
                ("0o20"      ,         16), # Octal
                ("020"       ,         16), # Octal
            ]


        values += [
                 #        Floats
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                (3.14        ,       3.14), # Float
                ("2.72"      ,       2.72), # Float
                ("1e3"       ,       1000), # Float
                (1e-3        ,      0.001), # Float
            ]

        values += [
                 #        All ints
                 # ----------------------
                 # Input     |   Expected
                 # ----------------------
                ("0xA"       ,         10), 
                ("012"       ,         10), 
                ("0o12"      ,         10), 
                ("0b01010"   ,         10), 
                ("10"        ,         10), 
                ("10.0"      ,         10), 
                ("1e1"       ,         10), 
            ]

        for _input, expected in values:
            value = to_number(_input)

            if isinstance(_input, str):
                cmd = 'to_number("{}")'.format(_input)
            else:
                cmd = 'to_number({})'.format(_input)

            print("{:23} = {:10} == {:10}".format(cmd, value, expected))
            self.assertEqual(value, expected)

Use:

def num(s):
    try:
        for each in s:
            yield int(each)
    except ValueError:
        yield float(each)
a = num(["123.55","345","44"])
print a.next()
print a.next()

This is the most Pythonic way I could come up with.


def num(s):
    try:
        return int(s)
    except ValueError:
        return float(s)

This is a function which will convert any object (not just str) to int or float, based on if the actual string supplied looks like int or float. Further if it's an object which has both __float and __int__ methods, it defaults to using __float__

def conv_to_num(x, num_type='asis'):
    '''Converts an object to a number if possible.
    num_type: int, float, 'asis'
    Defaults to floating point in case of ambiguity.
    '''
    import numbers

    is_num, is_str, is_other = [False]*3

    if isinstance(x, numbers.Number):
        is_num = True
    elif isinstance(x, str):
        is_str = True

    is_other = not any([is_num, is_str])

    if is_num:
        res = x
    elif is_str:
        is_float, is_int, is_char = [False]*3
        try:
            res = float(x)
            if '.' in x:
                is_float = True
            else:
                is_int = True
        except ValueError:
            res = x
            is_char = True

    else:
        if num_type == 'asis':
            funcs = [int, float]
        else:
            funcs = [num_type]

        for func in funcs:
            try:
                res = func(x)
                break
            except TypeError:
                continue
        else:
            res = x

Use:

>>> str_float = "545.2222"
>>> float(str_float)
545.2222
>>> type(_) # Check its type
<type 'float'>

>>> str_int = "31"
>>> int(str_int)
31
>>> type(_) # Check its type
<type 'int'>

I am surprised nobody mentioned regex because sometimes string must be prepared and normalized before casting to number

import re
def parseNumber(value, as_int=False):
    try:
        number = float(re.sub('[^.\-\d]', '', value))
        if as_int:
            return int(number + 0.5)
        else:
            return number
    except ValueError:
        return float('nan')  # or None if you wish

usage:

parseNumber('13,345')
> 13345.0

parseNumber('- 123 000')
> -123000.0

parseNumber('99999\n')
> 99999.0

and by the way, something to verify you have a number:

import numbers
def is_number(value):
    return isinstance(value, numbers.Number)
    # will work with int, float, long, Decimal

Localization and commas

You should consider the possibility of commas in the string representation of a number, for cases like float("545,545.2222") which throws an exception. Instead, use methods in locale to convert the strings to numbers and interpret commas correctly. The locale.atof method converts to a float in one step once the locale has been set for the desired number convention.

Example 1 -- United States number conventions

In the United States and the UK, commas can be used as a thousands separator. In this example with American locale, the comma is handled properly as a separator:

>>> import locale
>>> a = u'545,545.2222'
>>> locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
'en_US.UTF-8'
>>> locale.atof(a)
545545.2222
>>> int(locale.atof(a))
545545
>>>

Example 2 -- European number conventions

In the majority of countries of the world, commas are used for decimal marks instead of periods. In this example with French locale, the comma is correctly handled as a decimal mark:

>>> import locale
>>> b = u'545,2222'
>>> locale.setlocale(locale.LC_ALL, 'fr_FR')
'fr_FR'
>>> locale.atof(b)
545.2222

The method locale.atoi is also available, but the argument should be an integer.


Here's another interpretation of your question (hint: it's vague). It's possible you're looking for something like this:

def parseIntOrFloat( aString ):
    return eval( aString )

It works like this...

>>> parseIntOrFloat("545.2222")
545.22220000000004
>>> parseIntOrFloat("545")
545

Theoretically, there's an injection vulnerability. The string could, for example be "import os; os.abort()". Without any background on where the string comes from, however, the possibility is theoretical speculation. Since the question is vague, it's not at all clear if this vulnerability actually exists or not.


If you aren't averse to third-party modules, you could check out the fastnumbers module. It provides a function called fast_real that does exactly what this question is asking for and does it faster than a pure-Python implementation:

>>> from fastnumbers import fast_real
>>> fast_real("545.2222")
545.2222
>>> type(fast_real("545.2222"))
float
>>> fast_real("31")
31
>>> type(fast_real("31"))
int

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to parsing

Got a NumberFormatException while trying to parse a text file for objects Uncaught SyntaxError: Unexpected end of JSON input at JSON.parse (<anonymous>) Python/Json:Expecting property name enclosed in double quotes Correctly Parsing JSON in Swift 3 How to get response as String using retrofit without using GSON or any other library in android UIButton action in table view cell "Expected BEGIN_OBJECT but was STRING at line 1 column 1" How to convert an XML file to nice pandas dataframe? How to extract multiple JSON objects from one file? How to sum digits of an integer in java?

Examples related to floating-point

Convert list or numpy array of single element to float in python Convert float to string with precision & number of decimal digits specified? Float and double datatype in Java C convert floating point to int Convert String to Float in Swift How do I change data-type of pandas data frame to string with a defined format? How to check if a float value is a whole number Convert floats to ints in Pandas? Converting Float to Dollars and Cents Format / Suppress Scientific Notation from Python Pandas Aggregation Results

Examples related to type-conversion

How can I convert a char to int in Java? pandas dataframe convert column type to string or categorical How to convert an Object {} to an Array [] of key-value pairs in JavaScript convert string to number node.js Ruby: How to convert a string to boolean Convert bytes to int? Convert dataframe column to 1 or 0 for "true"/"false" values and assign to dataframe SQL Server: Error converting data type nvarchar to numeric How do I convert a Python 3 byte-string variable into a regular string? Leading zeros for Int in Swift

Examples related to integer

Python: create dictionary using dict() with integer keys? How to convert datetime to integer in python Can someone explain how to append an element to an array in C programming? How to get the Power of some Integer in Swift language? python "TypeError: 'numpy.float64' object cannot be interpreted as an integer" What's the difference between integer class and numeric class in R PostgreSQL: ERROR: operator does not exist: integer = character varying C++ - how to find the length of an integer Converting binary to decimal integer output Convert floats to ints in Pandas?