[c#] Exact time measurement for performance testing

What is the most exact way of seeing how long something, for example a method call, took in code?

The easiest and quickest I would guess is this:

DateTime start = DateTime.Now;
{
    // Do some work
}
TimeSpan timeItTook = DateTime.Now - start;

But how exact is this? Are there better ways?

This question is related to c# .net performance testing

The answer is


A better way is to use the Stopwatch class:

using System.Diagnostics;
// ...

Stopwatch sw = new Stopwatch();

sw.Start();

// ...

sw.Stop();

Console.WriteLine("Elapsed={0}",sw.Elapsed);

Stopwatch is fine, but loop the work 10^6 times, then divide by 10^6. You'll get a lot more precision.


As others have said, Stopwatch is a good class to use here. You can wrap it in a helpful method:

public static TimeSpan Time(Action action)
{
    Stopwatch stopwatch = Stopwatch.StartNew();
    action();
    stopwatch.Stop();
    return stopwatch.Elapsed;
}

(Note the use of Stopwatch.StartNew(). I prefer this to creating a Stopwatch and then calling Start() in terms of simplicity.) Obviously this incurs the hit of invoking a delegate, but in the vast majority of cases that won't be relevant. You'd then write:

TimeSpan time = StopwatchUtil.Time(() =>
{
    // Do some work
});

You could even make an ITimer interface for this, with implementations of StopwatchTimer, CpuTimer etc where available.


System.Diagnostics.Stopwatch is designed for this task.


Use the Stopwatch class


I'm using this:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(myUrl);
System.Diagnostics.Stopwatch timer = new Stopwatch();

timer.Start();

HttpWebResponse response = (HttpWebResponse)request.GetResponse();

statusCode = response.StatusCode.ToString();

response.Close();

timer.Stop();

As others said, Stopwatch should be the right tool for this. There can be few improvements made to it though, see this thread specifically: Benchmarking small code samples in C#, can this implementation be improved?.

I have seen some useful tips by Thomas Maierhofer here

Basically his code looks like:

//prevent the JIT Compiler from optimizing Fkt calls away
long seed = Environment.TickCount;

//use the second Core/Processor for the test
Process.GetCurrentProcess().ProcessorAffinity = new IntPtr(2);

//prevent "Normal" Processes from interrupting Threads
Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.High;

//prevent "Normal" Threads from interrupting this thread
Thread.CurrentThread.Priority = ThreadPriority.Highest;

//warm up
method();

var stopwatch = new Stopwatch()
for (int i = 0; i < repetitions; i++)
{
    stopwatch.Reset();
    stopwatch.Start();
    for (int j = 0; j < iterations; j++)
        method();
    stopwatch.Stop();
    print stopwatch.Elapsed.TotalMilliseconds;
}

Another approach is to rely on Process.TotalProcessTime to measure how long the CPU has been kept busy running the very code/process, as shown here This can reflect more real scenario since no other process affects the measurement. It does something like:

 var start = Process.GetCurrentProcess().TotalProcessorTime;
 method();
 var stop = Process.GetCurrentProcess().TotalProcessorTime;
 print (end - begin).TotalMilliseconds;

A naked, detailed implementation of the samething can be found here.

I wrote a helper class to perform both in an easy to use manner:

public class Clock
{
    interface IStopwatch
    {
        bool IsRunning { get; }
        TimeSpan Elapsed { get; }

        void Start();
        void Stop();
        void Reset();
    }



    class TimeWatch : IStopwatch
    {
        Stopwatch stopwatch = new Stopwatch();

        public TimeSpan Elapsed
        {
            get { return stopwatch.Elapsed; }
        }

        public bool IsRunning
        {
            get { return stopwatch.IsRunning; }
        }



        public TimeWatch()
        {
            if (!Stopwatch.IsHighResolution)
                throw new NotSupportedException("Your hardware doesn't support high resolution counter");

            //prevent the JIT Compiler from optimizing Fkt calls away
            long seed = Environment.TickCount;

            //use the second Core/Processor for the test
            Process.GetCurrentProcess().ProcessorAffinity = new IntPtr(2);

            //prevent "Normal" Processes from interrupting Threads
            Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.High;

            //prevent "Normal" Threads from interrupting this thread
            Thread.CurrentThread.Priority = ThreadPriority.Highest;
        }



        public void Start()
        {
            stopwatch.Start();
        }

        public void Stop()
        {
            stopwatch.Stop();
        }

        public void Reset()
        {
            stopwatch.Reset();
        }
    }



    class CpuWatch : IStopwatch
    {
        TimeSpan startTime;
        TimeSpan endTime;
        bool isRunning;



        public TimeSpan Elapsed
        {
            get
            {
                if (IsRunning)
                    throw new NotImplementedException("Getting elapsed span while watch is running is not implemented");

                return endTime - startTime;
            }
        }

        public bool IsRunning
        {
            get { return isRunning; }
        }



        public void Start()
        {
            startTime = Process.GetCurrentProcess().TotalProcessorTime;
            isRunning = true;
        }

        public void Stop()
        {
            endTime = Process.GetCurrentProcess().TotalProcessorTime;
            isRunning = false;
        }

        public void Reset()
        {
            startTime = TimeSpan.Zero;
            endTime = TimeSpan.Zero;
        }
    }



    public static void BenchmarkTime(Action action, int iterations = 10000)
    {
        Benchmark<TimeWatch>(action, iterations);
    }

    static void Benchmark<T>(Action action, int iterations) where T : IStopwatch, new()
    {
        //clean Garbage
        GC.Collect();

        //wait for the finalizer queue to empty
        GC.WaitForPendingFinalizers();

        //clean Garbage
        GC.Collect();

        //warm up
        action();

        var stopwatch = new T();
        var timings = new double[5];
        for (int i = 0; i < timings.Length; i++)
        {
            stopwatch.Reset();
            stopwatch.Start();
            for (int j = 0; j < iterations; j++)
                action();
            stopwatch.Stop();
            timings[i] = stopwatch.Elapsed.TotalMilliseconds;
            print timings[i];
        }
        print "normalized mean: " + timings.NormalizedMean().ToString();
    }

    public static void BenchmarkCpu(Action action, int iterations = 10000)
    {
        Benchmark<CpuWatch>(action, iterations);
    }
}

Just call

Clock.BenchmarkTime(() =>
{
    //code

}, 10000000);

or

Clock.BenchmarkCpu(() =>
{
    //code

}, 10000000);

The last part of the Clock is the tricky part. If you want to display the final timing, its up to you to choose what sort of timing you want. I wrote an extension method NormalizedMean which gives you the mean of the read timings discarding the noise. I mean I calculate the the deviation of each timing from the actual mean, and then I discard the values which was farer (only the slower ones) from the mean of deviation (called absolute deviation; note that its not the often heard standard deviation), and finally return the mean of remaining values. This means, for instance, if timed values are { 1, 2, 3, 2, 100 } (in ms or whatever), it discards 100, and returns the mean of { 1, 2, 3, 2 } which is 2. Or if timings are { 240, 220, 200, 220, 220, 270 }, it discards 270, and returns the mean of { 240, 220, 200, 220, 220 } which is 220.

public static double NormalizedMean(this ICollection<double> values)
{
    if (values.Count == 0)
        return double.NaN;

    var deviations = values.Deviations().ToArray();
    var meanDeviation = deviations.Sum(t => Math.Abs(t.Item2)) / values.Count;
    return deviations.Where(t => t.Item2 > 0 || Math.Abs(t.Item2) <= meanDeviation).Average(t => t.Item1);
}

public static IEnumerable<Tuple<double, double>> Deviations(this ICollection<double> values)
{
    if (values.Count == 0)
        yield break;

    var avg = values.Average();
    foreach (var d in values)
        yield return Tuple.Create(d, avg - d);
}

Examples related to c#

How can I convert this one line of ActionScript to C#? Microsoft Advertising SDK doesn't deliverer ads How to use a global array in C#? How to correctly write async method? C# - insert values from file into two arrays Uploading into folder in FTP? Are these methods thread safe? dotnet ef not found in .NET Core 3 HTTP Error 500.30 - ANCM In-Process Start Failure Best way to "push" into C# array

Examples related to .net

You must add a reference to assembly 'netstandard, Version=2.0.0.0 How to use Bootstrap 4 in ASP.NET Core No authenticationScheme was specified, and there was no DefaultChallengeScheme found with default authentification and custom authorization .net Core 2.0 - Package was restored using .NetFramework 4.6.1 instead of target framework .netCore 2.0. The package may not be fully compatible Update .NET web service to use TLS 1.2 EF Core add-migration Build Failed What is the difference between .NET Core and .NET Standard Class Library project types? Visual Studio 2017 - Could not load file or assembly 'System.Runtime, Version=4.1.0.0' or one of its dependencies Nuget connection attempt failed "Unable to load the service index for source" Token based authentication in Web API without any user interface

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to testing

Test process.env with Jest How to configure "Shorten command line" method for whole project in IntelliJ Jest spyOn function called Simulate a button click in Jest Mockito - NullpointerException when stubbing Method toBe(true) vs toBeTruthy() vs toBeTrue() How-to turn off all SSL checks for postman for a specific site What is the difference between smoke testing and sanity testing? ReferenceError: describe is not defined NodeJs How to properly assert that an exception gets raised in pytest?