When a treatment of text must be done to just extract data from it, I always think first to the regexes, because:
as far as I know, regexes have been invented for that
iterating over lines appears clumsy to me: it essentially consists to search the newlines then to search the data to extract in each line; that makes two searches instead of a direct unique one with a regex
way of bringing regexes into play is easy; only the writing of a regex string to be compiled into a regex object is sometimes hard, but in this case the treatment with an iteration over lines will be complicated too
For the problem discussed here, a regex solution is fast and easy to write:
import re
names = re.findall('\S+',open(filename).read())
I compared the speeds of several solutions:
import re
from time import clock
A,AA,B1,B2,BS,reg = [],[],[],[],[],[]
D,Dsh,C1,C2 = [],[],[],[]
F1,F2,F3 = [],[],[]
def nonblank_lines(f):
for l in f:
line = l.rstrip()
if line: yield line
def short_nonblank_lines(f):
for l in f:
line = l[0:-1]
if line: yield line
for essays in xrange(50):
te = clock()
with open('raa.txt') as f:
names_listA = [line.strip() for line in f if line.strip()] # Felix Kling
A.append(clock()-te)
te = clock()
with open('raa.txt') as f:
names_listAA = [line[0:-1] for line in f if line[0:-1]] # Felix Kling with line[0:-1]
AA.append(clock()-te)
#-------------------------------------------------------
te = clock()
with open('raa.txt') as f_in:
namesB1 = [ name for name in (l.strip() for l in f_in) if name ] # aaronasterling without list()
B1.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
namesB2 = [ name for name in (l[0:-1] for l in f_in) if name ] # aaronasterling without list() and with line[0:-1]
B2.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
namesBS = [ name for name in f_in.read().splitlines() if name ] # a list comprehension with read().splitlines()
BS.append(clock()-te)
#-------------------------------------------------------
te = clock()
with open('raa.txt') as f:
xreg = re.findall('\S+',f.read()) # eyquem
reg.append(clock()-te)
#-------------------------------------------------------
te = clock()
with open('raa.txt') as f_in:
linesC1 = list(line for line in (l.strip() for l in f_in) if line) # aaronasterling
C1.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
linesC2 = list(line for line in (l[0:-1] for l in f_in) if line) # aaronasterling with line[0:-1]
C2.append(clock()-te)
#-------------------------------------------------------
te = clock()
with open('raa.txt') as f_in:
yD = [ line for line in nonblank_lines(f_in) ] # aaronasterling update
D.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
yDsh = [ name for name in short_nonblank_lines(f_in) ] # nonblank_lines with line[0:-1]
Dsh.append(clock()-te)
#-------------------------------------------------------
te = clock()
with open('raa.txt') as f_in:
linesF1 = filter(None, (line.rstrip() for line in f_in)) # aaronasterling update 2
F1.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
linesF2 = filter(None, (line[0:-1] for line in f_in)) # aaronasterling update 2 with line[0:-1]
F2.append(clock()-te)
te = clock()
with open('raa.txt') as f_in:
linesF3 = filter(None, f_in.read().splitlines()) # aaronasterling update 2 with read().splitlines()
F3.append(clock()-te)
print 'names_listA == names_listAA==namesB1==namesB2==namesBS==xreg\n is ',\
names_listA == names_listAA==namesB1==namesB2==namesBS==xreg
print 'names_listA == yD==yDsh==linesC1==linesC2==linesF1==linesF2==linesF3\n is ',\
names_listA == yD==yDsh==linesC1==linesC2==linesF1==linesF2==linesF3,'\n\n\n'
def displ((fr,it,what)): print fr + str( min(it) )[0:7] + ' ' + what
map(displ,(('* ', A, '[line.strip() for line in f if line.strip()] * Felix Kling\n'),
(' ', B1, ' [name for name in (l.strip() for l in f_in) if name ] aaronasterling without list()'),
('* ', C1, 'list(line for line in (l.strip() for l in f_in) if line) * aaronasterling\n'),
('* ', reg, 're.findall("\S+",f.read()) * eyquem\n'),
('* ', D, '[ line for line in nonblank_lines(f_in) ] * aaronasterling update'),
(' ', Dsh, '[ line for line in short_nonblank_lines(f_in) ] nonblank_lines with line[0:-1]\n'),
('* ', F1 , 'filter(None, (line.rstrip() for line in f_in)) * aaronasterling update 2\n'),
(' ', B2, ' [name for name in (l[0:-1] for l in f_in) if name ] aaronasterling without list() and with line[0:-1]'),
(' ', C2, 'list(line for line in (l[0:-1] for l in f_in) if line) aaronasterling with line[0:-1]\n'),
(' ', AA, '[line[0:-1] for line in f if line[0:-1] ] Felix Kling with line[0:-1]\n'),
(' ', BS, '[name for name in f_in.read().splitlines() if name ] a list comprehension with read().splitlines()\n'),
(' ', F2 , 'filter(None, (line[0:-1] for line in f_in)) aaronasterling update 2 with line[0:-1]'),
(' ', F3 , 'filter(None, f_in.read().splitlines() aaronasterling update 2 with read().splitlines()'))
)
Solution with regex is straightforward and neat. Though, it isn't among the fastest ones. The solution of aaronasterling with filter() is surprisigly fast for me (I wasn't aware of this particular filter()'s speed) and times of optimized solutions go down until 27 % of the biggest time. I wonder what makes the miracle of the filter-splitlines association:
names_listA == names_listAA==namesB1==namesB2==namesBS==xreg
is True
names_listA == yD==yDsh==linesC1==linesC2==linesF1==linesF2==linesF3
is True
* 0.08266 [line.strip() for line in f if line.strip()] * Felix Kling
0.07535 [name for name in (l.strip() for l in f_in) if name ] aaronasterling without list()
* 0.06912 list(line for line in (l.strip() for l in f_in) if line) * aaronasterling
* 0.06612 re.findall("\S+",f.read()) * eyquem
* 0.06486 [ line for line in nonblank_lines(f_in) ] * aaronasterling update
0.05264 [ line for line in short_nonblank_lines(f_in) ] nonblank_lines with line[0:-1]
* 0.05451 filter(None, (line.rstrip() for line in f_in)) * aaronasterling update 2
0.04689 [name for name in (l[0:-1] for l in f_in) if name ] aaronasterling without list() and with line[0:-1]
0.04582 list(line for line in (l[0:-1] for l in f_in) if line) aaronasterling with line[0:-1]
0.04171 [line[0:-1] for line in f if line[0:-1] ] Felix Kling with line[0:-1]
0.03265 [name for name in f_in.read().splitlines() if name ] a list comprehension with read().splitlines()
0.03638 filter(None, (line[0:-1] for line in f_in)) aaronasterling update 2 with line[0:-1]
0.02198 filter(None, f_in.read().splitlines() aaronasterling update 2 with read().splitlines()
But this problem is particular, the most simple of all: only one name in each line. So the solutions are only games with lines, splitings and [0:-1] cuts.
On the contrary, regex doesn't matter with lines, it straightforwardly finds the desired data: I consider it is a more natural way of resolution, applying from the simplest to the more complex cases, and hence is often the way to be prefered in treatments of texts.
EDIT
I forgot to say that I use Python 2.7 and I measured the above times with a file containing 500 times the following chain
SMITH
JONES
WILLIAMS
TAYLOR
BROWN
DAVIES
EVANS
WILSON
THOMAS
JOHNSON
ROBERTS
ROBINSON
THOMPSON
WRIGHT
WALKER
WHITE
EDWARDS
HUGHES
GREEN
HALL
LEWIS
HARRIS
CLARKE
PATEL
JACKSON
WOOD
TURNER
MARTIN
COOPER
HILL
WARD
MORRIS
MOORE
CLARK
LEE
KING
BAKER
HARRISON
MORGAN
ALLEN
JAMES
SCOTT
PHILLIPS
WATSON
DAVIS
PARKER
PRICE
BENNETT
YOUNG
GRIFFITHS
MITCHELL
KELLY
COOK
CARTER
RICHARDSON
BAILEY
COLLINS
BELL
SHAW
MURPHY
MILLER
COX
RICHARDS
KHAN
MARSHALL
ANDERSON
SIMPSON
ELLIS
ADAMS
SINGH
BEGUM
WILKINSON
FOSTER
CHAPMAN
POWELL
WEBB
ROGERS
GRAY
MASON
ALI
HUNT
HUSSAIN
CAMPBELL
MATTHEWS
OWEN
PALMER
HOLMES
MILLS
BARNES
KNIGHT
LLOYD
BUTLER
RUSSELL
BARKER
FISHER
STEVENS
JENKINS
MURRAY
DIXON
HARVEY