[python] What is the difference between old style and new style classes in Python?

What is the difference between old style and new style classes in Python? When should I use one or the other?

This question is related to python class oop types new-style-class

The answer is


Important behavior changes between old and new style classes

  • super added
  • MRO changed (explained below)
  • descriptors added
  • new style class objects cannot be raised unless derived from Exception (example below)
  • __slots__ added

MRO (Method Resolution Order) changed

It was mentioned in other answers, but here goes a concrete example of the difference between classic MRO and C3 MRO (used in new style classes).

The question is the order in which attributes (which include methods and member variables) are searched for in multiple inheritance.

Classic classes do a depth-first search from left to right. Stop on the first match. They do not have the __mro__ attribute.

class C: i = 0
class C1(C): pass
class C2(C): i = 2
class C12(C1, C2): pass
class C21(C2, C1): pass

assert C12().i == 0
assert C21().i == 2

try:
    C12.__mro__
except AttributeError:
    pass
else:
    assert False

New-style classes MRO is more complicated to synthesize in a single English sentence. It is explained in detail here. One of its properties is that a base class is only searched for once all its derived classes have been. They have the __mro__ attribute which shows the search order.

class C(object): i = 0
class C1(C): pass
class C2(C): i = 2
class C12(C1, C2): pass
class C21(C2, C1): pass

assert C12().i == 2
assert C21().i == 2

assert C12.__mro__ == (C12, C1, C2, C, object)
assert C21.__mro__ == (C21, C2, C1, C, object)

New style class objects cannot be raised unless derived from Exception

Around Python 2.5 many classes could be raised, and around Python 2.6 this was removed. On Python 2.7.3:

# OK, old:
class Old: pass
try:
    raise Old()
except Old:
    pass
else:
    assert False

# TypeError, new not derived from `Exception`.
class New(object): pass
try:
    raise New()
except TypeError:
    pass
else:
    assert False

# OK, derived from `Exception`.
class New(Exception): pass
try:
    raise New()
except New:
    pass
else:
    assert False

# `'str'` is a new style object, so you can't raise it:
try:
    raise 'str'
except TypeError:
    pass
else:
    assert False

New style classes may use super(Foo, self) where Foo is a class and self is the instance.

super(type[, object-or-type])

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing inherited methods that have been overridden in a class. The search order is same as that used by getattr() except that the type itself is skipped.

And in Python 3.x you can simply use super() inside a class without any parameters.


Declaration-wise:

New-style classes inherit from object, or from another new-style class.

class NewStyleClass(object):
    pass

class AnotherNewStyleClass(NewStyleClass):
    pass

Old-style classes don't.

class OldStyleClass():
    pass

Python 3 Note:

Python 3 doesn't support old style classes, so either form noted above results in a new-style class.


New-style classes inherit from object and must be written as such in Python 2.2 onwards (i.e. class Classname(object): instead of class Classname:). The core change is to unify types and classes, and the nice side-effect of this is that it allows you to inherit from built-in types.

Read descrintro for more details.


Old style classes are still marginally faster for attribute lookup. This is not usually important, but it may be useful in performance-sensitive Python 2.x code:

In [3]: class A:
   ...:     def __init__(self):
   ...:         self.a = 'hi there'
   ...:

In [4]: class B(object):
   ...:     def __init__(self):
   ...:         self.a = 'hi there'
   ...:

In [6]: aobj = A()
In [7]: bobj = B()

In [8]: %timeit aobj.a
10000000 loops, best of 3: 78.7 ns per loop

In [10]: %timeit bobj.a
10000000 loops, best of 3: 86.9 ns per loop

Here's a very practical, true/false difference. The only difference between the two versions of the following code is that in the second version Person inherits from object. Other than that, the two versions are identical, but with different results:

  1. Old-style classes

    class Person():
        _names_cache = {}
        def __init__(self,name):
            self.name = name
        def __new__(cls,name):
            return cls._names_cache.setdefault(name,object.__new__(cls,name))
    
    ahmed1 = Person("Ahmed")
    ahmed2 = Person("Ahmed")
    print ahmed1 is ahmed2
    print ahmed1
    print ahmed2
    
    
    >>> False
    <__main__.Person instance at 0xb74acf8c>
    <__main__.Person instance at 0xb74ac6cc>
    >>>
    
    
  2. New-style classes

    class Person(object):
        _names_cache = {}
        def __init__(self,name):
            self.name = name
        def __new__(cls,name):
            return cls._names_cache.setdefault(name,object.__new__(cls,name))
    
    ahmed1 = Person("Ahmed")
    ahmed2 = Person("Ahmed")
    print ahmed2 is ahmed1
    print ahmed1
    print ahmed2
    
    >>> True
    <__main__.Person object at 0xb74ac66c>
    <__main__.Person object at 0xb74ac66c>
    >>>
    

Guido has written The Inside Story on New-Style Classes, a really great article about new-style and old-style class in Python.

Python 3 has only new-style class. Even if you write an 'old-style class', it is implicitly derived from object.

New-style classes have some advanced features lacking in old-style classes, such as super, the new C3 mro, some magical methods, etc.


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to class

String method cannot be found in a main class method Class constructor type in typescript? ReactJS - Call One Component Method From Another Component How do I declare a model class in my Angular 2 component using TypeScript? When to use Interface and Model in TypeScript / Angular Swift Error: Editor placeholder in source file Declaring static constants in ES6 classes? Creating a static class with no instances In R, dealing with Error: ggplot2 doesn't know how to deal with data of class numeric Static vs class functions/variables in Swift classes?

Examples related to oop

How to implement a simple scenario the OO way When to use 'raise NotImplementedError'? PHP: cannot declare class because the name is already in use Python class input argument Call an overridden method from super class in typescript Typescript: How to extend two classes? What's the difference between abstraction and encapsulation? An object reference is required to access a non-static member Java Multiple Inheritance Why not inherit from List<T>?

Examples related to types

Cannot invoke an expression whose type lacks a call signature How to declare a Fixed length Array in TypeScript Typescript input onchange event.target.value Error: Cannot invoke an expression whose type lacks a call signature Class constructor type in typescript? What is dtype('O'), in pandas? YAML equivalent of array of objects in JSON Converting std::__cxx11::string to std::string Append a tuple to a list - what's the difference between two ways? How to check if type is Boolean

Examples related to new-style-class

What is the difference between old style and new style classes in Python?