[python] How to split/partition a dataset into training and test datasets for, e.g., cross validation?

What is a good way to split a NumPy array randomly into training and testing/validation dataset? Something similar to the cvpartition or crossvalind functions in Matlab.

This question is related to python arrays optimization numpy

The answer is


You may also consider stratified division into training and testing set. Startified division also generates training and testing set randomly but in such a way that original class proportions are preserved. This makes training and testing sets better reflect the properties of the original dataset.

import numpy as np  

def get_train_test_inds(y,train_proportion=0.7):
    '''Generates indices, making random stratified split into training set and testing sets
    with proportions train_proportion and (1-train_proportion) of initial sample.
    y is any iterable indicating classes of each observation in the sample.
    Initial proportions of classes inside training and 
    testing sets are preserved (stratified sampling).
    '''

    y=np.array(y)
    train_inds = np.zeros(len(y),dtype=bool)
    test_inds = np.zeros(len(y),dtype=bool)
    values = np.unique(y)
    for value in values:
        value_inds = np.nonzero(y==value)[0]
        np.random.shuffle(value_inds)
        n = int(train_proportion*len(value_inds))

        train_inds[value_inds[:n]]=True
        test_inds[value_inds[n:]]=True

    return train_inds,test_inds

y = np.array([1,1,2,2,3,3])
train_inds,test_inds = get_train_test_inds(y,train_proportion=0.5)
print y[train_inds]
print y[test_inds]

This code outputs:

[1 2 3]
[1 2 3]

Likely you will not only need to split into train and test, but also cross validation to make sure your model generalizes. Here I am assuming 70% training data, 20% validation and 10% holdout/test data.

Check out the np.split:

If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis the array is split. For example, [2, 3] would, for axis=0, result in

ary[:2] ary[2:3] ary[3:]

t, v, h = np.split(df.sample(frac=1, random_state=1), [int(0.7*len(df)), int(0.9*len(df))]) 

Here is a code to split the data into n=5 folds in a stratified manner

% X = data array
% y = Class_label
from sklearn.cross_validation import StratifiedKFold
skf = StratifiedKFold(y, n_folds=5)
for train_index, test_index in skf:
    print("TRAIN:", train_index, "TEST:", test_index)
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

I'm aware that my solution is not the best, but it comes in handy when you want to split data in a simplistic way, especially when teaching data science to newbies!

def simple_split(descriptors, targets):
    testX_indices = [i for i in range(descriptors.shape[0]) if i % 4 == 0]
    validX_indices = [i for i in range(descriptors.shape[0]) if i % 4 == 1]
    trainX_indices = [i for i in range(descriptors.shape[0]) if i % 4 >= 2]

    TrainX = descriptors[trainX_indices, :]
    ValidX = descriptors[validX_indices, :]
    TestX = descriptors[testX_indices, :]

    TrainY = targets[trainX_indices]
    ValidY = targets[validX_indices]
    TestY = targets[testX_indices]

    return TrainX, ValidX, TestX, TrainY, ValidY, TestY

According to this code, data will be split into three parts - 1/4 for the test part, another 1/4 for the validation part, and 2/4 for the training set.


Thanks pberkes for your answer. I just modified it to avoid (1) replacement while sampling (2) duplicated instances occurred in both training and testing:

training_idx = np.random.choice(X.shape[0], int(np.round(X.shape[0] * 0.8)),replace=False)
training_idx = np.random.permutation(np.arange(X.shape[0]))[:np.round(X.shape[0] * 0.8)]
    test_idx = np.setdiff1d( np.arange(0,X.shape[0]), training_idx)

Just a note. In case you want train, test, AND validation sets, you can do this:

from sklearn.cross_validation import train_test_split

X = get_my_X()
y = get_my_y()
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)

These parameters will give 70 % to training, and 15 % each to test and val sets. Hope this helps.


I wrote a function for my own project to do this (it doesn't use numpy, though):

def partition(seq, chunks):
    """Splits the sequence into equal sized chunks and them as a list"""
    result = []
    for i in range(chunks):
        chunk = []
        for element in seq[i:len(seq):chunks]:
            chunk.append(element)
        result.append(chunk)
    return result

If you want the chunks to be randomized, just shuffle the list before passing it in.


After doing some reading and taking into account the (many..) different ways of splitting the data to train and test, I decided to timeit!

I used 4 different methods (non of them are using the library sklearn, which I'm sure will give the best results, giving that it is well designed and tested code):

  1. shuffle the whole matrix arr and then split the data to train and test
  2. shuffle the indices and then assign it x and y to split the data
  3. same as method 2, but in a more efficient way to do it
  4. using pandas dataframe to split

method 3 won by far with the shortest time, after that method 1, and method 2 and 4 discovered to be really inefficient.

The code for the 4 different methods I timed:

import numpy as np
arr = np.random.rand(100, 3)
X = arr[:,:2]
Y = arr[:,2]
spl = 0.7
N = len(arr)
sample = int(spl*N)

#%% Method 1:  shuffle the whole matrix arr and then split
np.random.shuffle(arr)
x_train, x_test, y_train, y_test = X[:sample,:], X[sample:, :], Y[:sample, ], Y[sample:,]

#%% Method 2: shuffle the indecies and then shuffle and apply to X and Y
train_idx = np.random.choice(N, sample)
Xtrain = X[train_idx]
Ytrain = Y[train_idx]

test_idx = [idx for idx in range(N) if idx not in train_idx]
Xtest = X[test_idx]
Ytest = Y[test_idx]

#%% Method 3: shuffle indicies without a for loop
idx = np.random.permutation(arr.shape[0])  # can also use random.shuffle
train_idx, test_idx = idx[:sample], idx[sample:]
x_train, x_test, y_train, y_test = X[train_idx,:], X[test_idx,:], Y[train_idx,], Y[test_idx,]

#%% Method 4: using pandas dataframe to split
import pandas as pd
df = pd.read_csv(file_path, header=None) # Some csv file (I used some file with 3 columns)

train = df.sample(frac=0.7, random_state=200)
test = df.drop(train.index)

And for the times, the minimum time to execute out of 3 repetitions of 1000 loops is:

  • Method 1: 0.35883826200006297 seconds
  • Method 2: 1.7157016959999964 seconds
  • Method 3: 1.7876616719995582 seconds
  • Method 4: 0.07562861499991413 seconds

I hope that's helpful!


As sklearn.cross_validation module was deprecated, you can use:

import numpy as np
from sklearn.model_selection import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)

X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.2, random_state=42)

Split into train test and valid

x =np.expand_dims(np.arange(100), -1)


print(x)

indices = np.random.permutation(x.shape[0])

training_idx, test_idx, val_idx = indices[:int(x.shape[0]*.9)], indices[int(x.shape[0]*.9):int(x.shape[0]*.95)],  indices[int(x.shape[0]*.9):int(x.shape[0]*.95)]


training, test, val = x[training_idx,:], x[test_idx,:], x[val_idx,:]

print(training, test, val)

There is another option that just entails using scikit-learn. As scikit's wiki describes, you can just use the following instructions:

from sklearn.model_selection import train_test_split

data, labels = np.arange(10).reshape((5, 2)), range(5)

data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.20, random_state=42)

This way you can keep in sync the labels for the data you're trying to split into training and test.


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to arrays

PHP array value passes to next row Use NSInteger as array index How do I show a message in the foreach loop? Objects are not valid as a React child. If you meant to render a collection of children, use an array instead Iterating over arrays in Python 3 Best way to "push" into C# array Sort Array of object by object field in Angular 6 Checking for duplicate strings in JavaScript array what does numpy ndarray shape do? How to round a numpy array?

Examples related to optimization

Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Measuring execution time of a function in C++ GROUP BY having MAX date How to efficiently remove duplicates from an array without using Set Storing JSON in database vs. having a new column for each key Read file As String How to write a large buffer into a binary file in C++, fast? Is optimisation level -O3 dangerous in g++? Why is processing a sorted array faster than processing an unsorted array? MySQL my.cnf performance tuning recommendations

Examples related to numpy

Unable to allocate array with shape and data type How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Numpy, multiply array with scalar TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" Pytorch tensor to numpy array Numpy Resize/Rescale Image what does numpy ndarray shape do? How to round a numpy array? numpy array TypeError: only integer scalar arrays can be converted to a scalar index