[c#] Is it possible to dynamically compile and execute C# code fragments?

I was wondering if it is possible to save C# code fragments to a text file (or any input stream), and then execute those dynamically? Assuming what is provided to me would compile fine within any Main() block, is it possible to compile and/or execute this code? I would prefer to compile it for performance reasons.

At the very least, I could define an interface that they would be required to implement, then they would provide a code 'section' that implemented that interface.

This question is related to c#

The answer is


Others have already given good answers on how to generate code at runtime so I thought I would address your second paragraph. I have some experience with this and just want to share a lesson I learned from that experience.

At the very least, I could define an interface that they would be required to implement, then they would provide a code 'section' that implemented that interface.

You may have a problem if you use an interface as a base type. If you add a single new method to the interface in the future all existing client-supplied classes that implement the interface now become abstract, meaning you won't be able to compile or instantiate the client-supplied class at runtime.

I had this issue when it came time to add a new method after about 1 year of shipping the old interface and after distributing a large amount of "legacy" data that needed to be supported. I ended up making a new interface that inherited from the old one but this approach made it harder to load and instantiate the client-supplied classes because I had to check which interface was available.

One solution I thought of at the time was to instead use an actual class as a base type such as the one below. The class itself can be marked abstract but all methods should be empty virtual methods (not abstract methods). Clients can then override the methods they want and I can add new methods to the base class without invalidating existing client-supplied code.

public abstract class BaseClass
{
    public virtual void Foo1() { }
    public virtual bool Foo2() { return false; }
    ...
}

Regardless of whether this problem applies you should consider how to version the interface between your code base and the client-supplied code.


I recently needed to spawn processes for unit testing. This post was useful as I created a simple class to do that with either code as a string or code from my project. To build this class, you'll need the ICSharpCode.Decompiler and Microsoft.CodeAnalysis NuGet packages. Here's the class:

using ICSharpCode.Decompiler;
using ICSharpCode.Decompiler.CSharp;
using ICSharpCode.Decompiler.TypeSystem;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;

public static class CSharpRunner
{
   public static object Run(string snippet, IEnumerable<Assembly> references, string typeName, string methodName, params object[] args) =>
      Invoke(Compile(Parse(snippet), references), typeName, methodName, args);

   public static object Run(MethodInfo methodInfo, params object[] args)
   {
      var refs = methodInfo.DeclaringType.Assembly.GetReferencedAssemblies().Select(n => Assembly.Load(n));
      return Invoke(Compile(Decompile(methodInfo), refs), methodInfo.DeclaringType.FullName, methodInfo.Name, args);
   }

   private static Assembly Compile(SyntaxTree syntaxTree, IEnumerable<Assembly> references = null)
   {
      if (references is null) references = new[] { typeof(object).Assembly, typeof(Enumerable).Assembly };
      var mrefs = references.Select(a => MetadataReference.CreateFromFile(a.Location));
      var compilation = CSharpCompilation.Create(Path.GetRandomFileName(), new[] { syntaxTree }, mrefs, new CSharpCompilationOptions(OutputKind.DynamicallyLinkedLibrary));

      using (var ms = new MemoryStream())
      {
         var result = compilation.Emit(ms);
         if (result.Success)
         {
            ms.Seek(0, SeekOrigin.Begin);
            return Assembly.Load(ms.ToArray());
         }
         else
         {
            throw new InvalidOperationException(string.Join("\n", result.Diagnostics.Where(diagnostic => diagnostic.IsWarningAsError || diagnostic.Severity == DiagnosticSeverity.Error).Select(d => $"{d.Id}: {d.GetMessage()}")));
         }
      }
   }

   private static SyntaxTree Decompile(MethodInfo methodInfo)
   {
      var decompiler = new CSharpDecompiler(methodInfo.DeclaringType.Assembly.Location, new DecompilerSettings());
      var typeInfo = decompiler.TypeSystem.MainModule.Compilation.FindType(methodInfo.DeclaringType).GetDefinition();
      return Parse(decompiler.DecompileTypeAsString(typeInfo.FullTypeName));
   }

   private static object Invoke(Assembly assembly, string typeName, string methodName, object[] args)
   {
      var type = assembly.GetType(typeName);
      var obj = Activator.CreateInstance(type);
      return type.InvokeMember(methodName, BindingFlags.Default | BindingFlags.InvokeMethod, null, obj, args);
   }

   private static SyntaxTree Parse(string snippet) => CSharpSyntaxTree.ParseText(snippet);
}

To use it, call the Run methods as below:

void Demo1()
{
   const string code = @"
   public class Runner
   {
      public void Run() { System.IO.File.AppendAllText(@""C:\Temp\NUnitTest.txt"", System.DateTime.Now.ToString(""o"") + ""\n""); }
   }";

   CSharpRunner.Run(code, null, "Runner", "Run");
}

void Demo2()
{
   CSharpRunner.Run(typeof(Runner).GetMethod("Run"));
}

public class Runner
{
   public void Run() { System.IO.File.AppendAllText(@"C:\Temp\NUnitTest.txt", System.DateTime.Now.ToString("o") + "\n"); }
}

You can compile a piece C# of code into memory and generate assembly bytes with Roslyn. It's already mentioned but would be worth adding some Roslyn example for this here. The following is the complete example:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.Emit;

namespace RoslynCompileSample
{
    class Program
    {
        static void Main(string[] args)
        {
            // define source code, then parse it (to the type used for compilation)
            SyntaxTree syntaxTree = CSharpSyntaxTree.ParseText(@"
                using System;

                namespace RoslynCompileSample
                {
                    public class Writer
                    {
                        public void Write(string message)
                        {
                            Console.WriteLine(message);
                        }
                    }
                }");

            // define other necessary objects for compilation
            string assemblyName = Path.GetRandomFileName();
            MetadataReference[] references = new MetadataReference[]
            {
                MetadataReference.CreateFromFile(typeof(object).Assembly.Location),
                MetadataReference.CreateFromFile(typeof(Enumerable).Assembly.Location)
            };

            // analyse and generate IL code from syntax tree
            CSharpCompilation compilation = CSharpCompilation.Create(
                assemblyName,
                syntaxTrees: new[] { syntaxTree },
                references: references,
                options: new CSharpCompilationOptions(OutputKind.DynamicallyLinkedLibrary));

            using (var ms = new MemoryStream())
            {
                // write IL code into memory
                EmitResult result = compilation.Emit(ms);

                if (!result.Success)
                {
                    // handle exceptions
                    IEnumerable<Diagnostic> failures = result.Diagnostics.Where(diagnostic => 
                        diagnostic.IsWarningAsError || 
                        diagnostic.Severity == DiagnosticSeverity.Error);

                    foreach (Diagnostic diagnostic in failures)
                    {
                        Console.Error.WriteLine("{0}: {1}", diagnostic.Id, diagnostic.GetMessage());
                    }
                }
                else
                {
                    // load this 'virtual' DLL so that we can use
                    ms.Seek(0, SeekOrigin.Begin);
                    Assembly assembly = Assembly.Load(ms.ToArray());

                    // create instance of the desired class and call the desired function
                    Type type = assembly.GetType("RoslynCompileSample.Writer");
                    object obj = Activator.CreateInstance(type);
                    type.InvokeMember("Write",
                        BindingFlags.Default | BindingFlags.InvokeMethod,
                        null,
                        obj,
                        new object[] { "Hello World" });
                }
            }

            Console.ReadLine();
        }
    }
}

Found this useful - ensures the compiled Assembly references everything you currently have referenced, since there's a good chance you wanted the C# you're compiling to use some classes etc in the code that's emitting this:

(string code is the dynamic C# being compiled)

        var refs = AppDomain.CurrentDomain.GetAssemblies();
        var refFiles = refs.Where(a => !a.IsDynamic).Select(a => a.Location).ToArray();
        var cSharp = (new Microsoft.CSharp.CSharpCodeProvider()).CreateCompiler();
        var compileParams = new System.CodeDom.Compiler.CompilerParameters(refFiles);
        compileParams.GenerateInMemory = true;
        compileParams.GenerateExecutable = false;

        var compilerResult = cSharp.CompileAssemblyFromSource(compileParams, code);
        var asm = compilerResult.CompiledAssembly;

In my case I was emitting a class, whose name was stored in a string, className, which had a single public static method named Get(), that returned with type StoryDataIds. Here's what calling that method looks like:

        var tempType = asm.GetType(className);
        var ids = (StoryDataIds)tempType.GetMethod("Get").Invoke(null, null);

Warning: Compilation can be surprisingly, extremely slow. A small, relatively simple 10-line chunk of code compiles at normal priority in 2-10 seconds on our relatively fast server. You should never tie calls to CompileAssemblyFromSource() to anything with normal performance expectations, like a web request. Instead, proactively compile code you need on a low-priority thread and have a way of dealing with code that requires that code to be ready, until it's had a chance to finish compiling. For example you could use it in a batch job process.


To compile you could just initiate a shell call to the csc compiler. You may have a headache trying to keep your paths and switches straight but it certainly can be done.

C# Corner Shell Examples

EDIT: Or better yet, use the CodeDOM as Noldorin suggested...