Some explain from C++Primer 5th Page 35
If we assign an out-of-range value to an object of unsigned type, the result is the remainder of the value modulo the number of values the target type can hold.
For example, an 8-bit unsigned char can hold values from 0 through 255, inclusive. If we assign a value outside the range, the compiler assigns the remainder of that value modulo 256.
unsigned char c = -1; // assuming 8-bit chars, c has value 255
If we assign an out-of-range value to an object of signed type, the result is undefined. The program might appear to work, it might crash, or it might produce garbage values.
Page 160: If any operand is an unsigned type, the type to which the operands are converted depends on the relative sizes of the integral types on the machine.
... When the signedness differs and the type of the unsigned operand is the same as or larger than that of the signed operand, the signed operand is converted to unsigned.
The remaining case is when the signed operand has a larger type than the unsigned operand. In this case, the result is machine dependent. If all values in the unsigned type fit in the large type, then the unsigned operand is converted to the signed type. If the values don't fit, then the signed operand is converted to the unsigned type.
For example, if the operands are long and unsigned int, and int and long have the same size, the length will be converted to unsigned int. If the long type has more bits, then the unsigned int will be converted to long.
I found reading this book is very helpful.