Expanding on this method, applied to finding the mode of the data where you may need the index of the actual array to see how far away the value is from the center of the distribution.
(_, idx, counts) = np.unique(a, return_index=True, return_counts=True)
index = idx[np.argmax(counts)]
mode = a[index]
Remember to discard the mode when len(np.argmax(counts)) > 1, also to validate if it is actually representative of the central distribution of your data you may check whether it falls inside your standard deviation interval.