[python] Why does Python code use len() function instead of a length method?

I know that python has a len() function that is used to determine the size of a string, but I was wondering why it's not a method of the string object.

Update

Ok, I realized I was embarrassingly mistaken. __len__() is actually a method of a string object. It just seems weird to see object oriented code in Python using the len function on string objects. Furthermore, it's also weird to see __len__ as the name instead of just len.

This question is related to python function oop methods string-length

The answer is


met% python -c 'import this' | grep 'only one'
There should be one-- and preferably only one --obvious way to do it.

Jim's answer to this question may help; I copy it here. Quoting Guido van Rossum:

First of all, I chose len(x) over x.len() for HCI reasons (def __len__() came much later). There are two intertwined reasons actually, both HCI:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a long tradition in mathematics which likes notations where the visuals help the mathematician thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into xa + xb to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me two things: the result is an integer, and the argument is some kind of container. To the contrary, when I read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

Saying the same thing in another way, I see ‘len‘ as a built-in operation. I’d hate to lose that. /…/


It doesn't?

>>> "abc".__len__()
3

There is a len method:

>>> a = 'a string of some length'
>>> a.__len__()
23
>>> a.__len__
<method-wrapper '__len__' of str object at 0x02005650>

Jim's answer to this question may help; I copy it here. Quoting Guido van Rossum:

First of all, I chose len(x) over x.len() for HCI reasons (def __len__() came much later). There are two intertwined reasons actually, both HCI:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a long tradition in mathematics which likes notations where the visuals help the mathematician thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into xa + xb to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me two things: the result is an integer, and the argument is some kind of container. To the contrary, when I read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

Saying the same thing in another way, I see ‘len‘ as a built-in operation. I’d hate to lose that. /…/


met% python -c 'import this' | grep 'only one'
There should be one-- and preferably only one --obvious way to do it.

You can also say

>> x = 'test'
>> len(x)
4

Using Python 2.7.3.


Python is a pragmatic programming language, and the reasons for len() being a function and not a method of str, list, dict etc. are pragmatic.

The len() built-in function deals directly with built-in types: the CPython implementation of len() actually returns the value of the ob_size field in the PyVarObject C struct that represents any variable-sized built-in object in memory. This is much faster than calling a method -- no attribute lookup needs to happen. Getting the number of items in a collection is a common operation and must work efficiently for such basic and diverse types as str, list, array.array etc.

However, to promote consistency, when applying len(o) to a user-defined type, Python calls o.__len__() as a fallback. __len__, __abs__ and all the other special methods documented in the Python Data Model make it easy to create objects that behave like the built-ins, enabling the expressive and highly consistent APIs we call "Pythonic".

By implementing special methods your objects can support iteration, overload infix operators, manage contexts in with blocks etc. You can think of the Data Model as a way of using the Python language itself as a framework where the objects you create can be integrated seamlessly.

A second reason, supported by quotes from Guido van Rossum like this one, is that it is easier to read and write len(s) than s.len().

The notation len(s) is consistent with unary operators with prefix notation, like abs(n). len() is used way more often than abs(), and it deserves to be as easy to write.

There may also be a historical reason: in the ABC language which preceded Python (and was very influential in its design), there was a unary operator written as #s which meant len(s).


Something missing from the rest of the answers here: the len function checks that the __len__ method returns a non-negative int. The fact that len is a function means that classes cannot override this behaviour to avoid the check. As such, len(obj) gives a level of safety that obj.len() cannot.

Example:

>>> class A:
...     def __len__(self):
...         return 'foo'
...
>>> len(A())
Traceback (most recent call last):
  File "<pyshell#8>", line 1, in <module>
    len(A())
TypeError: 'str' object cannot be interpreted as an integer
>>> class B:
...     def __len__(self):
...         return -1
... 
>>> len(B())
Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    len(B())
ValueError: __len__() should return >= 0

Of course, it is possible to "override" the len function by reassigning it as a global variable, but code which does this is much more obviously suspicious than code which overrides a method in a class.


There is a len method:

>>> a = 'a string of some length'
>>> a.__len__()
23
>>> a.__len__
<method-wrapper '__len__' of str object at 0x02005650>

It doesn't?

>>> "abc".__len__()
3

Jim's answer to this question may help; I copy it here. Quoting Guido van Rossum:

First of all, I chose len(x) over x.len() for HCI reasons (def __len__() came much later). There are two intertwined reasons actually, both HCI:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a long tradition in mathematics which likes notations where the visuals help the mathematician thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into xa + xb to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me two things: the result is an integer, and the argument is some kind of container. To the contrary, when I read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

Saying the same thing in another way, I see ‘len‘ as a built-in operation. I’d hate to lose that. /…/


There are some great answers here, and so before I give my own I'd like to highlight a few of the gems (no ruby pun intended) I've read here.

  • Python is not a pure OOP language -- it's a general purpose, multi-paradigm language that allows the programmer to use the paradigm they are most comfortable with and/or the paradigm that is best suited for their solution.
  • Python has first-class functions, so len is actually an object. Ruby, on the other hand, doesn't have first class functions. So the len function object has it's own methods that you can inspect by running dir(len).

If you don't like the way this works in your own code, it's trivial for you to re-implement the containers using your preferred method (see example below).

>>> class List(list):
...     def len(self):
...         return len(self)
...
>>> class Dict(dict):
...     def len(self):
...         return len(self)
...
>>> class Tuple(tuple):
...     def len(self):
...         return len(self)
...
>>> class Set(set):
...     def len(self):
...         return len(self)
...
>>> my_list = List([1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'])
>>> my_dict = Dict({'key': 'value', 'site': 'stackoverflow'})
>>> my_set = Set({1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'})
>>> my_tuple = Tuple((1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'))
>>> my_containers = Tuple((my_list, my_dict, my_set, my_tuple))
>>>
>>> for container in my_containers:
...     print container.len()
...
15
2
15
15

There is a len method:

>>> a = 'a string of some length'
>>> a.__len__()
23
>>> a.__len__
<method-wrapper '__len__' of str object at 0x02005650>

met% python -c 'import this' | grep 'only one'
There should be one-- and preferably only one --obvious way to do it.

There are some great answers here, and so before I give my own I'd like to highlight a few of the gems (no ruby pun intended) I've read here.

  • Python is not a pure OOP language -- it's a general purpose, multi-paradigm language that allows the programmer to use the paradigm they are most comfortable with and/or the paradigm that is best suited for their solution.
  • Python has first-class functions, so len is actually an object. Ruby, on the other hand, doesn't have first class functions. So the len function object has it's own methods that you can inspect by running dir(len).

If you don't like the way this works in your own code, it's trivial for you to re-implement the containers using your preferred method (see example below).

>>> class List(list):
...     def len(self):
...         return len(self)
...
>>> class Dict(dict):
...     def len(self):
...         return len(self)
...
>>> class Tuple(tuple):
...     def len(self):
...         return len(self)
...
>>> class Set(set):
...     def len(self):
...         return len(self)
...
>>> my_list = List([1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'])
>>> my_dict = Dict({'key': 'value', 'site': 'stackoverflow'})
>>> my_set = Set({1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'})
>>> my_tuple = Tuple((1,2,3,4,5,6,7,8,9,'A','B','C','D','E','F'))
>>> my_containers = Tuple((my_list, my_dict, my_set, my_tuple))
>>>
>>> for container in my_containers:
...     print container.len()
...
15
2
15
15

It doesn't?

>>> "abc".__len__()
3

Jim's answer to this question may help; I copy it here. Quoting Guido van Rossum:

First of all, I chose len(x) over x.len() for HCI reasons (def __len__() came much later). There are two intertwined reasons actually, both HCI:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a long tradition in mathematics which likes notations where the visuals help the mathematician thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into xa + xb to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me two things: the result is an integer, and the argument is some kind of container. To the contrary, when I read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

Saying the same thing in another way, I see ‘len‘ as a built-in operation. I’d hate to lose that. /…/


There is a len method:

>>> a = 'a string of some length'
>>> a.__len__()
23
>>> a.__len__
<method-wrapper '__len__' of str object at 0x02005650>

Something missing from the rest of the answers here: the len function checks that the __len__ method returns a non-negative int. The fact that len is a function means that classes cannot override this behaviour to avoid the check. As such, len(obj) gives a level of safety that obj.len() cannot.

Example:

>>> class A:
...     def __len__(self):
...         return 'foo'
...
>>> len(A())
Traceback (most recent call last):
  File "<pyshell#8>", line 1, in <module>
    len(A())
TypeError: 'str' object cannot be interpreted as an integer
>>> class B:
...     def __len__(self):
...         return -1
... 
>>> len(B())
Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    len(B())
ValueError: __len__() should return >= 0

Of course, it is possible to "override" the len function by reassigning it as a global variable, but code which does this is much more obviously suspicious than code which overrides a method in a class.


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to function

$http.get(...).success is not a function Function to calculate R2 (R-squared) in R How to Call a Function inside a Render in React/Jsx How does Python return multiple values from a function? Default optional parameter in Swift function How to have multiple conditions for one if statement in python Uncaught TypeError: .indexOf is not a function Proper use of const for defining functions in JavaScript Run php function on button click includes() not working in all browsers

Examples related to oop

How to implement a simple scenario the OO way When to use 'raise NotImplementedError'? PHP: cannot declare class because the name is already in use Python class input argument Call an overridden method from super class in typescript Typescript: How to extend two classes? What's the difference between abstraction and encapsulation? An object reference is required to access a non-static member Java Multiple Inheritance Why not inherit from List<T>?

Examples related to methods

String method cannot be found in a main class method Calling another method java GUI ReactJS - Call One Component Method From Another Component multiple conditions for JavaScript .includes() method java, get set methods includes() not working in all browsers Python safe method to get value of nested dictionary Calling one method from another within same class in Python TypeError: method() takes 1 positional argument but 2 were given Android ListView with onClick items

Examples related to string-length

String field value length in mongoDB SQL SELECT everything after a certain character Length of string in bash Get column value length, not column max length of value How to get the number of characters in a string How to find the length of a string in R Retrieve the maximum length of a VARCHAR column in SQL Server Measure string size in Bytes in php How to get the size of a string in Python? Display only 10 characters of a long string?