I should point out that none of the answers provided so far give you the number of characters as you would expect, especially when you're dealing with emojis (but also some languages like Thai, Korean, or Arabic). VonC's suggestions will output the following:
fmt.Println(utf8.RuneCountInString("??")) // Outputs "6".
fmt.Println(len([]rune("??"))) // Outputs "6".
That's because these methods only count Unicode code points. There are many characters which can be composed of multiple code points.
Same for using the Normalization package:
var ia norm.Iter
ia.InitString(norm.NFKD, "??")
nc := 0
for !ia.Done() {
nc = nc + 1
ia.Next()
}
fmt.Println(nc) // Outputs "6".
Normalization is not really the same as counting characters and many characters cannot be normalized into a one-code-point equivalent.
masakielastic's answer comes close but only handles modifiers (the rainbow flag contains a modifier which is thus not counted as its own code point):
fmt.Println(GraphemeCountInString("??")) // Outputs "5".
fmt.Println(GraphemeCountInString2("??")) // Outputs "5".
The correct way to split Unicode strings into (user-perceived) characters, i.e. grapheme clusters, is defined in the Unicode Standard Annex #29. The rules can be found in Section 3.1.1. The github.com/rivo/uniseg package implements these rules so you can determine the correct number of characters in a string:
fmt.Println(uniseg.GraphemeClusterCount("??")) // Outputs "2".