You have a recent presentation "Monadologie -- professional help on type anxiety" by Christopher League (July 12th, 2010), which is quite interesting on topics of continuation and monad.
The video going with this (slideshare) presentation is actually available at vimeo.
The Monad part start around 37 minutes in, on this one hour video, and starts with slide 42 of its 58 slide presentation.
It is presented as "the leading design pattern for functional programming", but the language used in the examples is Scala, which is both OOP and functional.
You can read more on Monad in Scala in the blog post "Monads - Another way to abstract computations in Scala", from Debasish Ghosh (March 27, 2008).
A type constructor M is a monad if it supports these operations:
# the return function
def unit[A] (x: A): M[A]
# called "bind" in Haskell
def flatMap[A,B] (m: M[A]) (f: A => M[B]): M[B]
# Other two can be written in term of the first two:
def map[A,B] (m: M[A]) (f: A => B): M[B] =
flatMap(m){ x => unit(f(x)) }
def andThen[A,B] (ma: M[A]) (mb: M[B]): M[B] =
flatMap(ma){ x => mb }
So for instance (in Scala):
Option
is a monaddef unit[A] (x: A): Option[A] = Some(x) def flatMap[A,B](m:Option[A])(f:A =>Option[B]): Option[B] = m match { case None => None case Some(x) => f(x) }
List
is Monaddef unit[A] (x: A): List[A] = List(x) def flatMap[A,B](m:List[A])(f:A =>List[B]): List[B] = m match { case Nil => Nil case x::xs => f(x) ::: flatMap(xs)(f) }
Monad are a big deal in Scala because of convenient syntax built to take advantage of Monad structures:
for
comprehension in Scala:
for {
i <- 1 to 4
j <- 1 to i
k <- 1 to j
} yield i*j*k
is translated by the compiler to:
(1 to 4).flatMap { i =>
(1 to i).flatMap { j =>
(1 to j).map { k =>
i*j*k }}}
The key abstraction is the flatMap
, which binds the computation through chaining.
Each invocation of flatMap
returns the same data structure type (but of different value), that serves as the input to the next command in chain.
In the above snippet, flatMap takes as input a closure (SomeType) => List[AnotherType]
and returns a List[AnotherType]
. The important point to note is that all flatMaps take the same closure type as input and return the same type as output.
This is what "binds" the computation thread - every item of the sequence in the for-comprehension has to honor this same type constraint.
If you take two operations (that may fail) and pass the result to the third, like:
lookupVenue: String => Option[Venue]
getLoggedInUser: SessionID => Option[User]
reserveTable: (Venue, User) => Option[ConfNo]
but without taking advantage of Monad, you get convoluted OOP-code like:
val user = getLoggedInUser(session)
val confirm =
if(!user.isDefined) None
else lookupVenue(name) match {
case None => None
case Some(venue) =>
val confno = reserveTable(venue, user.get)
if(confno.isDefined)
mailTo(confno.get, user.get)
confno
}
whereas with Monad, you can work with the actual types (Venue
, User
) like all the operations work, and keep the Option verification stuff hidden, all because of the flatmaps of the for syntax:
val confirm = for {
venue <- lookupVenue(name)
user <- getLoggedInUser(session)
confno <- reserveTable(venue, user)
} yield {
mailTo(confno, user)
confno
}
The yield part will only be executed if all three functions have Some[X]
; any None
would directly be returned to confirm
.
So:
Monads allow ordered computation within Functional Programing, that allows us to model sequencing of actions in a nice structured form, somewhat like a DSL.
And the greatest power comes with the ability to compose monads that serve different purposes, into extensible abstractions within an application.
This sequencing and threading of actions by a monad is done by the language compiler that does the transformation through the magic of closures.
By the way, Monad is not only model of computation used in FP:
Category theory proposes many models of computation. Among them
- the Arrow model of computations
- the Monad model of computations
- the Applicative model of computations