[python] How does functools partial do what it does?

This answer is more of an example code. All the above answers give good explanations regarding why one should use partial. I will give my observations and use cases about partial.

from functools import partial
 def adder(a,b,c):
    print('a:{},b:{},c:{}'.format(a,b,c))
    ans = a+b+c
    print(ans)
partial_adder = partial(adder,1,2)
partial_adder(3)  ## now partial_adder is a callable that can take only one argument

Output of the above code should be:

a:1,b:2,c:3
6

Notice that in the above example a new callable was returned that will take parameter (c) as it's argument. Note that it is also the last argument to the function.

args = [1,2]
partial_adder = partial(adder,*args)
partial_adder(3)

Output of the above code is also:

a:1,b:2,c:3
6

Notice that * was used to unpack the non-keyword arguments and the callable returned in terms of which argument it can take is same as above.

Another observation is: Below example demonstrates that partial returns a callable which will take the undeclared parameter (a) as an argument.

def adder(a,b=1,c=2,d=3,e=4):
    print('a:{},b:{},c:{},d:{},e:{}'.format(a,b,c,d,e))
    ans = a+b+c+d+e
    print(ans)
partial_adder = partial(adder,b=10,c=2)
partial_adder(20)

Output of the above code should be:

a:20,b:10,c:2,d:3,e:4
39

Similarly,

kwargs = {'b':10,'c':2}
partial_adder = partial(adder,**kwargs)
partial_adder(20)

Above code prints

a:20,b:10,c:2,d:3,e:4
39

I had to use it when I was using Pool.map_async method from multiprocessing module. You can pass only one argument to the worker function so I had to use partial to make my worker function look like a callable with only one input argument but in reality my worker function had multiple input arguments.