[c++] Is "delete this" allowed in C++?

Is it allowed to delete this; if the delete-statement is the last statement that will be executed on that instance of the class? Of course I'm sure that the object represented by the this-pointer is newly-created.

I'm thinking about something like this:

void SomeModule::doStuff()
{
    // in the controller, "this" object of SomeModule is the "current module"
    // now, if I want to switch over to a new Module, eg:

    controller->setWorkingModule(new OtherModule());

    // since the new "OtherModule" object will take the lead, 
    // I want to get rid of this "SomeModule" object:

    delete this;
}

Can I do this?

The answer is


You can do so. However, you can't assign to this. Thus the reason you state for doing this, "I want to change the view," seems very questionable. The better method, in my opinion, would be for the object that holds the view to replace that view.

Of course, you're using RAII objects and so you don't actually need to call delete at all...right?


One of the reasons that C++ was designed was to make it easy to reuse code. In general, C++ should be written so that it works whether the class is instantiated on the heap, in an array, or on the stack. "Delete this" is a very bad coding practice because it will only work if a single instance is defined on the heap; and there had better not be another delete statement, which is typically used by most developers to clean up the heap. Doing this also assumes that no maintenance programmer in the future will cure a falsely perceived memory leak by adding a delete statement.

Even if you know in advance that your current plan is to only allocate a single instance on the heap, what if some happy-go-lucky developer comes along in the future and decides to create an instance on the stack? Or, what if he cuts and pastes certain portions of the class to a new class that he intends to use on the stack? When the code reaches "delete this" it will go off and delete it, but then when the object goes out of scope, it will call the destructor. The destructor will then try to delete it again and then you are hosed. In the past, doing something like this would screw up not only the program but the operating system and the computer would need to be rebooted. In any case, this is highly NOT recommended and should almost always be avoided. I would have to be desperate, seriously plastered, or really hate the company I worked for to write code that did this.


Yes, delete this; has defined results, as long as (as you've noted) you assure the object was allocated dynamically, and (of course) never attempt to use the object after it's destroyed. Over the years, many questions have been asked about what the standard says specifically about delete this;, as opposed to deleting some other pointer. The answer to that is fairly short and simple: it doesn't say much of anything. It just says that delete's operand must be an expression that designates a pointer to an object, or an array of objects. It goes into quite a bit of detail about things like how it figures out what (if any) deallocation function to call to release the memory, but the entire section on delete (§[expr.delete]) doesn't mention delete this; specifically at all. The section on destrucors does mention delete this in one place (§[class.dtor]/13):

At the point of definition of a virtual destructor (including an implicit definition (15.8)), the non-array deallocation function is determined as if for the expression delete this appearing in a non-virtual destructor of the destructor’s class (see 8.3.5).

That tends to support the idea that the standard considers delete this; to be valid--if it was invalid, its type wouldn't be meaningful. That's the only place the standard mentions delete this; at all, as far as I know.

Anyway, some consider delete this a nasty hack, and tell anybody who will listen that it should be avoided. One commonly cited problem is the difficulty of ensuring that objects of the class are only ever allocated dynamically. Others consider it a perfectly reasonable idiom, and use it all the time. Personally, I'm somewhere in the middle: I rarely use it, but don't hesitate to do so when it seems to be the right tool for the job.

The primary time you use this technique is with an object that has a life that's almost entirely its own. One example James Kanze has cited was a billing/tracking system he worked on for a phone company. When start to you make a phone call, something takes note of that and creates a phone_call object. From that point onward, the phone_call object handles the details of the phone call (making a connection when you dial, adding an entry to the database to say when the call started, possibly connect more people if you do a conference call, etc.) When the last people on the call hang up, the phone_call object does its final book-keeping (e.g., adds an entry to the database to say when you hung up, so they can compute how long your call was) and then destroys itself. The lifetime of the phone_call object is based on when the first person starts the call and when the last people leave the call--from the viewpoint of the rest of the system, it's basically entirely arbitrary, so you can't tie it to any lexical scope in the code, or anything on that order.

For anybody who might care about how dependable this kind of coding can be: if you make a phone call to, from, or through almost any part of Europe, there's a pretty good chance that it's being handled (at least in part) by code that does exactly this.


If it scares you, there's a perfectly legal hack:

void myclass::delete_me()
{
    std::unique_ptr<myclass> bye_bye(this);
}

I think delete this is idiomatic C++ though, and I only present this as a curiosity.

There is a case where this construct is actually useful - you can delete the object after throwing an exception that needs member data from the object. The object remains valid until after the throw takes place.

void myclass::throw_error()
{
    std::unique_ptr<myclass> bye_bye(this);
    throw std::runtime_exception(this->error_msg);
}

Note: if you're using a compiler older than C++11 you can use std::auto_ptr instead of std::unique_ptr, it will do the same thing.


This is an old, answered, question, but @Alexandre asked "Why would anyone want to do this?", and I thought that I might provide an example usage that I am considering this afternoon.

Legacy code. Uses naked pointers Obj*obj with a delete obj at the end.

Unfortunately I need sometimes, not often, to keep the object alive longer.

I am considering making it a reference counted smart pointer. But there would be lots of code to change, if I was to use ref_cnt_ptr<Obj> everywhere. And if you mix naked Obj* and ref_cnt_ptr, you can get the object implicitly deleted when the last ref_cnt_ptr goes away, even though there are Obj* still alive.

So I am thinking about creating an explicit_delete_ref_cnt_ptr. I.e. a reference counted pointer where the delete is only done in an explicit delete routine. Using it in the one place where the existing code knows the lifetime of the object, as well as in my new code that keeps the object alive longer.

Incrementing and decrementing the reference count as explicit_delete_ref_cnt_ptr get manipulated.

But NOT freeing when the reference count is seen to be zero in the explicit_delete_ref_cnt_ptr destructor.

Only freeing when the reference count is seen to be zero in an explicit delete-like operation. E.g. in something like:

template<typename T> class explicit_delete_ref_cnt_ptr { 
 private: 
   T* ptr;
   int rc;
   ...
 public: 
   void delete_if_rc0() {
      if( this->ptr ) {
        this->rc--;
        if( this->rc == 0 ) {
           delete this->ptr;
        }
        this->ptr = 0;
      }
    }
 };

OK, something like that. It's a bit unusual to have a reference counted pointer type not automatically delete the object pointed to in the rc'ed ptr destructor. But it seems like this might make mixing naked pointers and rc'ed pointers a bit safer.

But so far no need for delete this.

But then it occurred to me: if the object pointed to, the pointee, knows that it is being reference counted, e.g. if the count is inside the object (or in some other table), then the routine delete_if_rc0 could be a method of the pointee object, not the (smart) pointer.

class Pointee { 
 private: 
   int rc;
   ...
 public: 
   void delete_if_rc0() {
        this->rc--;
        if( this->rc == 0 ) {
           delete this;
        }
      }
    }
 };

Actually, it doesn't need to be a member method at all, but could be a free function:

map<void*,int> keepalive_map;
template<typename T>
void delete_if_rc0(T*ptr) {
        void* tptr = (void*)ptr;
        if( keepalive_map[tptr] == 1 ) {
           delete ptr;
        }
};

(BTW, I know the code is not quite right - it becomes less readable if I add all the details, so I am leaving it like this.)


This is the core idiom for reference-counted objects.

Reference-counting is a strong form of deterministic garbage collection- it ensures objects manage their OWN lifetime instead of relying on 'smart' pointers, etc. to do it for them. The underlying object is only ever accessed via "Reference" smart pointers, designed so that the pointers increment and decrement a member integer (the reference count) in the actual object.

When the last reference drops off the stack or is deleted, the reference count will go to zero. Your object's default behavior will then be a call to "delete this" to garbage collect- the libraries I write provide a protected virtual "CountIsZero" call in the base class so that you can override this behavior for things like caching.

The key to making this safe is not allowing users access to the CONSTRUCTOR of the object in question (make it protected), but instead making them call some static member- the FACTORY- like "static Reference CreateT(...)". That way you KNOW for sure that they're always built with ordinary "new" and that no raw pointer is ever available, so "delete this" won't ever blow up.


Well, in Component Object Model (COM) delete this construction can be a part of Release method that is called whenever you want to release aquisited object:

void IMyInterface::Release()
{
    --instanceCount;
    if(instanceCount == 0)
        delete this;
}

It is allowed (just do not use the object after that), but I wouldn't write such code on practice. I think that delete this should appear only in functions that called release or Release and looks like: void release() { ref--; if (ref<1) delete this; }.


Delete this is legal as long as object is in heap. You would need to require object to be heap only. The only way to do that is to make the destructor protected - this way delete may be called ONLY from class , so you would need a method that would ensure deletion


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to memory-management

When to create variables (memory management) How to check if pytorch is using the GPU? How to delete multiple pandas (python) dataframes from memory to save RAM? Is there a way to delete created variables, functions, etc from the memory of the interpreter? C++ error : terminate called after throwing an instance of 'std::bad_alloc' How to delete object? Android Studio - How to increase Allocated Heap Size Implementing IDisposable correctly Calculating Page Table Size Pointer-to-pointer dynamic two-dimensional array

Examples related to new-operator

Java FileOutputStream Create File if not exists How to add to an existing hash in Ruby Expression must have class type Why should C++ programmers minimize use of 'new'? Creating an object: with or without `new` int *array = new int[n]; what is this function actually doing? Open button in new window? How to open in default browser in C# Print in new line, java Deleting an object in C++

Examples related to delete-operator

Double free or corruption after queue::push Deleting a pointer in C++ C++ delete vector, objects, free memory Meaning of = delete after function declaration Is it safe to delete a NULL pointer? Is "delete this" allowed in C++? C++ Array of pointers: delete or delete []? delete vs delete[] operators in C++ How does delete[] know it's an array? Does delete on a pointer to a subclass call the base class destructor?

Examples related to self-destruction

Is "delete this" allowed in C++?