[java] When to create variables (memory management)

You create a variable to store a value that you can refer to that variable in the future. I've heard that you must set a variable to 'null' once you're done using it so the garbage collector can get to it (if it's a field var).

If I were to have a variable that I won't be referring to agaon, would removing the reference/value vars I'm using (and just using the numbers when needed) save memory? For example:

int number = 5; public void method() {     System.out.println(number); } 

Would that take more space than just plugging '5' into the println method?

I have a few integers that I don't refer to in my code ever again (game loop), but I've seen others use reference vars on things that really didn't need them. Been looking into memory management, so please let me know, along with any other advice you have to offer about managing memory

The answer is


It's really a matter of opinion. In your example, System.out.println(5) would be slightly more efficient, as you only refer to the number once and never change it. As was said in a comment, int is a primitive type and not a reference - thus it doesn't take up much space. However, you might want to set actual reference variables to null only if they are used in a very complicated method. All local reference variables are garbage collected when the method they are declared in returns.


So notice variables are on the stack, the values they refer to are on the heap. So having variables is not too bad but yes they do create references to other entities. However in the simple case you describe it's not really any consequence. If it is never read again and within a contained scope, the compiler will probably strip it out before runtime. Even if it didn't the garbage collector will be able to safely remove it after the stack squashes. If you are running into issues where you have too many stack variables, it's usually because you have really deep stacks. The amount of stack space needed per thread is a better place to adjust than to make your code unreadable. The setting to null is also no longer needed


In your example number is a primitive, so will be stored as a value.

If you want to use a reference then you should use one of the wrapper types (e.g. Integer)


Well, the JVM memory model works something like this: values are stored on one pile of memory stack and objects are stored on another pile of memory called the heap. The garbage collector looks for garbage by looking at a list of objects you've made and seeing which ones aren't pointed at by anything. This is where setting an object to null comes in; all nonprimitive (think of classes) variables are really references that point to the object on the stack, so by setting the reference you have to null the garbage collector can see that there's nothing else pointing at the object and it can decide to garbage collect it. All Java objects are stored on the heap so they can be seen and collected by the garbage collector.

Nonprimitive (ints, chars, doubles, those sort of things) values, however, aren't stored on the heap. They're created and stored temporarily as they're needed and there's not much you can do there, but thankfully the compilers nowadays are really efficient and will avoid needed to store them on the JVM stack unless they absolutely need to.

On a bytecode level, that's basically how it works. The JVM is based on a stack-based machine, with a couple instructions to create allocate objects on the heap as well, and a ton of instructions to manipulate, push and pop values, off the stack. Local variables are stored on the stack, allocated variables on the heap.* These are the heap and the stack I'm referring to above. Here's a pretty good starting point if you want to get into the nitty gritty details.

In the resulting compiled code, there's a bit of leeway in terms of implementing the heap and stack. Allocation's implemented as allocation, there's really not a way around doing so. Thus the virtual machine heap becomes an actual heap, and allocations in the bytecode are allocations in actual memory. But you can get around using a stack to some extent, since instead of storing the values on a stack (and accessing a ton of memory), you can stored them on registers on the CPU which can be up to a hundred times (maybe even a thousand) faster than storing it on memory. But there's cases where this isn't possible (look up register spilling for one example of when this may happen), and using a stack to implement a stack kind of makes a lot of sense.

And quite frankly in your case a few integers probably won't matter. The compiler will probably optimize them out by itself in this case anyways. Optimization should always happen after you get it running and notice it's a tad slower than you'd prefer it to be. Worry about making simple, elegant, working code first then later make it fast (and hopefully) simple, elegant, working code.

Java's actually very nicely made so that you shouldn't have to worry about nulling variables very often. Whenever you stop needing to use something, it will usually incidentally be disappearing from the scope of your program (and thus becoming eligible for garbage collection). So I guess the real lesson here is to use local variables as often as you can.

*There's also a constant pool, a local variable pool, and a couple other things in memory but you have close to no control over the size of those things and I want to keep this fairly simple.


Examples related to java

Under what circumstances can I call findViewById with an Options Menu / Action Bar item? How much should a function trust another function How to implement a simple scenario the OO way Two constructors How do I get some variable from another class in Java? this in equals method How to split a string in two and store it in a field How to do perspective fixing? String index out of range: 4 My eclipse won't open, i download the bundle pack it keeps saying error log

Examples related to variables

When to create variables (memory management) How to print a Groovy variable in Jenkins? What does ${} (dollar sign and curly braces) mean in a string in Javascript? How to access global variables How to initialize a variable of date type in java? How to define a variable in a Dockerfile? Why does foo = filter(...) return a <filter object>, not a list? How can I pass variable to ansible playbook in the command line? How do I use this JavaScript variable in HTML? Static vs class functions/variables in Swift classes?

Examples related to memory-management

When to create variables (memory management) How to check if pytorch is using the GPU? How to delete multiple pandas (python) dataframes from memory to save RAM? Is there a way to delete created variables, functions, etc from the memory of the interpreter? C++ error : terminate called after throwing an instance of 'std::bad_alloc' How to delete object? Android Studio - How to increase Allocated Heap Size Implementing IDisposable correctly Calculating Page Table Size Pointer-to-pointer dynamic two-dimensional array

Examples related to reference

Method Call Chaining; returning a pointer vs a reference? When to create variables (memory management) Reference to non-static member function must be called Cannot find reference 'xxx' in __init__.py - Python / Pycharm c++ "Incomplete type not allowed" error accessing class reference information (Circular dependency with forward declaration) C++ initial value of reference to non-const must be an lvalue Dependent DLL is not getting copied to the build output folder in Visual Studio How to write to error log file in PHP How to reference Microsoft.Office.Interop.Excel dll? Linker Error C++ "undefined reference "

Examples related to garbage-collection

When to create variables (memory management) Difference between Xms and Xmx and XX:MaxPermSize Java GC (Allocation Failure) How to handle :java.util.concurrent.TimeoutException: android.os.BinderProxy.finalize() timed out after 10 seconds errors? Implementing IDisposable correctly How to check heap usage of a running JVM from the command line? how to destroy an object in java? How to force deletion of a python object? How can I read a large text file line by line using Java? GC overhead limit exceeded