See the following sample code on how to Build a basic Keras Neural Net Model, save Model (JSON) & Weights (HDF5) and load them:
# create model
model = Sequential()
model.add(Dense(X.shape[1], input_dim=X.shape[1], activation='relu')) #Input Layer
model.add(Dense(X.shape[1], activation='relu')) #Hidden Layer
model.add(Dense(output_dim, activation='softmax')) #Output Layer
# Compile & Fit model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X,Y,nb_epoch=5,batch_size=100,verbose=1)
# serialize model to JSON
model_json = model.to_json()
with open("Data/model.json", "w") as json_file:
json_file.write(simplejson.dumps(simplejson.loads(model_json), indent=4))
# serialize weights to HDF5
model.save_weights("Data/model.h5")
print("Saved model to disk")
# load json and create model
json_file = open('Data/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("Data/model.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
# Define X_test & Y_test data first
loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
score = loaded_model.evaluate(X_test, Y_test, verbose=0)
print ("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))