[python] How to concatenate two layers in keras?

You're getting the error because result defined as Sequential() is just a container for the model and you have not defined an input for it.

Given what you're trying to build set result to take the third input x3.

first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

third = Sequential()
# of course you must provide the input to result which will be your x3
third.add(Dense(1, input_shape=(1,), activation='sigmoid'))

# lets say you add a few more layers to first and second.
# concatenate them
merged = Concatenate([first, second])

# then concatenate the two outputs

result = Concatenate([merged,  third])

ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)

result.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

However, my preferred way of building a model that has this type of input structure would be to use the functional api.

Here is an implementation of your requirements to get you started:

from keras.models import Model
from keras.layers import Concatenate, Dense, LSTM, Input, concatenate
from keras.optimizers import Adagrad

first_input = Input(shape=(2, ))
first_dense = Dense(1, )(first_input)

second_input = Input(shape=(2, ))
second_dense = Dense(1, )(second_input)

merge_one = concatenate([first_dense, second_dense])

third_input = Input(shape=(1, ))
merge_two = concatenate([merge_one, third_input])

model = Model(inputs=[first_input, second_input, third_input], outputs=merge_two)
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
model.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

To answer the question in the comments:

  1. How are result and merged connected? Assuming you mean how are they concatenated.

Concatenation works like this:

  a        b         c
a b c   g h i    a b c g h i
d e f   j k l    d e f j k l

i.e rows are just joined.

  1. Now, x1 is input to first, x2 is input into second and x3 input into third.

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to keras

Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Tensorflow 2.0 - AttributeError: module 'tensorflow' has no attribute 'Session' What is the use of verbose in Keras while validating the model? Save and load weights in keras How to import keras from tf.keras in Tensorflow? How to check which version of Keras is installed? Can I run Keras model on gpu? How to check if keras tensorflow backend is GPU or CPU version? Keras input explanation: input_shape, units, batch_size, dim, etc

Examples related to neural-network

How to initialize weights in PyTorch? Keras input explanation: input_shape, units, batch_size, dim, etc What is the role of "Flatten" in Keras? How to concatenate two layers in keras? Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? How to return history of validation loss in Keras Keras model.summary() result - Understanding the # of Parameters Where do I call the BatchNormalization function in Keras? How to interpret "loss" and "accuracy" for a machine learning model