[python] What is the use of verbose in Keras while validating the model?

I'm running the LSTM model for the first time. Here is my model:

opt = Adam(0.002)
inp = Input(...)
print(inp)
x = Embedding(....)(inp)
x = LSTM(...)(x)
x = BatchNormalization()(x)
pred = Dense(5,activation='softmax')(x)

model = Model(inp,pred)
model.compile(....)

idx = np.random.permutation(X_train.shape[0])
model.fit(X_train[idx], y_train[idx], nb_epoch=1, batch_size=128, verbose=1)

What is the use of verbose while training the model?

This question is related to python deep-learning keras verbose

The answer is


verbose: Integer. 0, 1, or 2. Verbosity mode.

Verbose=0 (silent)

Verbose=1 (progress bar)

Train on 186219 samples, validate on 20691 samples
Epoch 1/2
186219/186219 [==============================] - 85s 455us/step - loss: 0.5815 - acc: 
0.7728 - val_loss: 0.4917 - val_acc: 0.8029
Train on 186219 samples, validate on 20691 samples
Epoch 2/2
186219/186219 [==============================] - 84s 451us/step - loss: 0.4921 - acc: 
0.8071 - val_loss: 0.4617 - val_acc: 0.8168

Verbose=2 (one line per epoch)

Train on 186219 samples, validate on 20691 samples
Epoch 1/1
 - 88s - loss: 0.5746 - acc: 0.7753 - val_loss: 0.4816 - val_acc: 0.8075
Train on 186219 samples, validate on 20691 samples
Epoch 1/1
 - 88s - loss: 0.4880 - acc: 0.8076 - val_loss: 0.5199 - val_acc: 0.8046

For verbose > 0, fit method logs:

  • loss: value of loss function for your training data
  • acc: accuracy value for your training data.

Note: If regularization mechanisms are used, they are turned on to avoid overfitting.

if validation_data or validation_split arguments are not empty, fit method logs:

  • val_loss: value of loss function for your validation data
  • val_acc: accuracy value for your validation data

Note: Regularization mechanisms are turned off at testing time because we are using all the capabilities of the network.

For example, using verbose while training the model helps to detect overfitting which occurs if your acc keeps improving while your val_acc gets worse.


By default verbose = 1,

verbose = 1, which includes both progress bar and one line per epoch

verbose = 0, means silent

verbose = 2, one line per epoch i.e. epoch no./total no. of epochs


The order of details provided with verbose flag are as

Less details.... More details

0 < 2 < 1

Default is 1

For production environment, 2 is recommended


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to deep-learning

How to initialize weights in PyTorch? What is the use of verbose in Keras while validating the model? How to import keras from tf.keras in Tensorflow? Keras input explanation: input_shape, units, batch_size, dim, etc Pytorch reshape tensor dimension What is the role of "Flatten" in Keras? Best way to save a trained model in PyTorch? Update TensorFlow Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? Keras, How to get the output of each layer?

Examples related to keras

Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Tensorflow 2.0 - AttributeError: module 'tensorflow' has no attribute 'Session' What is the use of verbose in Keras while validating the model? Save and load weights in keras How to import keras from tf.keras in Tensorflow? How to check which version of Keras is installed? Can I run Keras model on gpu? How to check if keras tensorflow backend is GPU or CPU version? Keras input explanation: input_shape, units, batch_size, dim, etc

Examples related to verbose

What is the use of verbose in Keras while validating the model?