I run into the same problem and wrote a little shared-memory utility class to work around it.
I'm using multiprocessing.RawArray
(lockfree), and also the access to the arrays is not synchronized at all (lockfree), be careful not to shoot your own feet.
With the solution I get speedups by a factor of approx 3 on a quad-core i7.
Here's the code: Feel free to use and improve it, and please report back any bugs.
'''
Created on 14.05.2013
@author: martin
'''
import multiprocessing
import ctypes
import numpy as np
class SharedNumpyMemManagerError(Exception):
pass
'''
Singleton Pattern
'''
class SharedNumpyMemManager:
_initSize = 1024
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(SharedNumpyMemManager, cls).__new__(
cls, *args, **kwargs)
return cls._instance
def __init__(self):
self.lock = multiprocessing.Lock()
self.cur = 0
self.cnt = 0
self.shared_arrays = [None] * SharedNumpyMemManager._initSize
def __createArray(self, dimensions, ctype=ctypes.c_double):
self.lock.acquire()
# double size if necessary
if (self.cnt >= len(self.shared_arrays)):
self.shared_arrays = self.shared_arrays + [None] * len(self.shared_arrays)
# next handle
self.__getNextFreeHdl()
# create array in shared memory segment
shared_array_base = multiprocessing.RawArray(ctype, np.prod(dimensions))
# convert to numpy array vie ctypeslib
self.shared_arrays[self.cur] = np.ctypeslib.as_array(shared_array_base)
# do a reshape for correct dimensions
# Returns a masked array containing the same data, but with a new shape.
# The result is a view on the original array
self.shared_arrays[self.cur] = self.shared_arrays[self.cnt].reshape(dimensions)
# update cnt
self.cnt += 1
self.lock.release()
# return handle to the shared memory numpy array
return self.cur
def __getNextFreeHdl(self):
orgCur = self.cur
while self.shared_arrays[self.cur] is not None:
self.cur = (self.cur + 1) % len(self.shared_arrays)
if orgCur == self.cur:
raise SharedNumpyMemManagerError('Max Number of Shared Numpy Arrays Exceeded!')
def __freeArray(self, hdl):
self.lock.acquire()
# set reference to None
if self.shared_arrays[hdl] is not None: # consider multiple calls to free
self.shared_arrays[hdl] = None
self.cnt -= 1
self.lock.release()
def __getArray(self, i):
return self.shared_arrays[i]
@staticmethod
def getInstance():
if not SharedNumpyMemManager._instance:
SharedNumpyMemManager._instance = SharedNumpyMemManager()
return SharedNumpyMemManager._instance
@staticmethod
def createArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__createArray(*args, **kwargs)
@staticmethod
def getArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__getArray(*args, **kwargs)
@staticmethod
def freeArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__freeArray(*args, **kwargs)
# Init Singleton on module load
SharedNumpyMemManager.getInstance()
if __name__ == '__main__':
import timeit
N_PROC = 8
INNER_LOOP = 10000
N = 1000
def propagate(t):
i, shm_hdl, evidence = t
a = SharedNumpyMemManager.getArray(shm_hdl)
for j in range(INNER_LOOP):
a[i] = i
class Parallel_Dummy_PF:
def __init__(self, N):
self.N = N
self.arrayHdl = SharedNumpyMemManager.createArray(self.N, ctype=ctypes.c_double)
self.pool = multiprocessing.Pool(processes=N_PROC)
def update_par(self, evidence):
self.pool.map(propagate, zip(range(self.N), [self.arrayHdl] * self.N, [evidence] * self.N))
def update_seq(self, evidence):
for i in range(self.N):
propagate((i, self.arrayHdl, evidence))
def getArray(self):
return SharedNumpyMemManager.getArray(self.arrayHdl)
def parallelExec():
pf = Parallel_Dummy_PF(N)
print(pf.getArray())
pf.update_par(5)
print(pf.getArray())
def sequentialExec():
pf = Parallel_Dummy_PF(N)
print(pf.getArray())
pf.update_seq(5)
print(pf.getArray())
t1 = timeit.Timer("sequentialExec()", "from __main__ import sequentialExec")
t2 = timeit.Timer("parallelExec()", "from __main__ import parallelExec")
print("Sequential: ", t1.timeit(number=1))
print("Parallel: ", t2.timeit(number=1))