[python] How do I parallelize a simple Python loop?

This is probably a trivial question, but how do I parallelize the following loop in python?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

I know how to start single threads in Python but I don't know how to "collect" the results.

Multiple processes would be fine too - whatever is easiest for this case. I'm using currently Linux but the code should run on Windows and Mac as-well.

What's the easiest way to parallelize this code?

This question is related to python parallel-processing

The answer is


I found joblib is very useful with me. Please see following example:

from joblib import Parallel, delayed
def yourfunction(k):   
    s=3.14*k*k
    print "Area of a circle with a radius ", k, " is:", s

element_run = Parallel(n_jobs=-1)(delayed(yourfunction)(k) for k in range(1,10))

n_jobs=-1: use all available cores


This is the easiest way to do it!

You can use asyncio. (Documentation can be found here). It is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network and web-servers, database connection libraries, distributed task queues, etc. Plus it has both high-level and low-level APIs to accomodate any kind of problem.

import asyncio

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)

    return wrapped

@background
def your_function(argument):
    #code

Now this function will be run in parallel whenever called without putting main program into wait state. You can use it to parallelize for loop as well. When called for a for loop, though loop is sequential but every iteration runs in parallel to the main program as soon as interpreter gets there. For instance:

@background
def your_function(argument):
    time.sleep(5)
    print('function finished for '+str(argument))


for i in range(10):
    your_function(i)


print('loop finished')

This produces following output:

loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1

Let's say we have an async function

async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
    # Do some async procesing    

That needs to be run on a large array. Some attributes are being passed to the program and some are used from property of dictionary element in the array.

async def process_students(self, student_name: str, loop):
    market = sys.argv[2]
    subjects = [...] #Some large array
    batchsize = 5
    for i in range(0, len(subjects), batchsize):
        batch = subjects[i:i+batchsize]
        await asyncio.gather(*(self.work_async(student_name,
                                           sub['Code'],
                                           loop)
                       for sub in batch))

Dask futures; I'm surprised no one has mentioned it yet . . .

from dask.distributed import Client

client = Client(n_workers=8) # In this example I have 8 cores and processes (can also use threads if desired)

def my_function(i):
    output = <code to execute in the for loop here>
    return output

futures = []

for i in <whatever you want to loop across here>:
    future = client.submit(my_function, i)
    futures.append(future)

results = client.gather(futures)
client.close()

thanks @iuryxavier

from multiprocessing import Pool
from multiprocessing import cpu_count


def add_1(x):
    return x + 1

if __name__ == "__main__":
    pool = Pool(cpu_count())
    results = pool.map(add_1, range(10**12))
    pool.close()  # 'TERM'
    pool.join()   # 'KILL'

There are a number of advantages to using Ray:

  • You can parallelize over multiple machines in addition to multiple cores (with the same code).
  • Efficient handling of numerical data through shared memory (and zero-copy serialization).
  • High task throughput with distributed scheduling.
  • Fault tolerance.

In your case, you could start Ray and define a remote function

import ray

ray.init()

@ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
    # Do something.
    return 1, 2, 3

and then invoke it in parallel

output1, output2, output3 = [], [], []

# Launch the tasks.
for j in range(10):
    id1, id2, id3 = calc_stuff.remote(parameter=j)
    output1.append(id1)
    output2.append(id2)
    output3.append(id3)

# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)

To run the same example on a cluster, the only line that would change would be the call to ray.init(). The relevant documentation can be found here.

Note that I'm helping to develop Ray.


Have a look at this;

http://docs.python.org/library/queue.html

This might not be the right way to do it, but I'd do something like;

Actual code;

from multiprocessing import Process, JoinableQueue as Queue 

class CustomWorker(Process):
    def __init__(self,workQueue, out1,out2,out3):
        Process.__init__(self)
        self.input=workQueue
        self.out1=out1
        self.out2=out2
        self.out3=out3
    def run(self):
            while True:
                try:
                    value = self.input.get()
                    #value modifier
                    temp1,temp2,temp3 = self.calc_stuff(value)
                    self.out1.put(temp1)
                    self.out2.put(temp2)
                    self.out3.put(temp3)
                    self.input.task_done()
                except Queue.Empty:
                    return
                   #Catch things better here
    def calc_stuff(self,param):
        out1 = param * 2
        out2 = param * 4
        out3 = param * 8
        return out1,out2,out3
def Main():
    inputQueue = Queue()
    for i in range(10):
        inputQueue.put(i)
    out1 = Queue()
    out2 = Queue()
    out3 = Queue()
    processes = []
    for x in range(2):
          p = CustomWorker(inputQueue,out1,out2,out3)
          p.daemon = True
          p.start()
          processes.append(p)
    inputQueue.join()
    while(not out1.empty()):
        print out1.get()
        print out2.get()
        print out3.get()
if __name__ == '__main__':
    Main()

Hope that helps.


why dont you use threads, and one mutex to protect one global list?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

keep in mind, you will be as fast as your slowest thread


To parallelize a simple for loop, joblib brings a lot of value to raw use of multiprocessing. Not only the short syntax, but also things like transparent bunching of iterations when they are very fast (to remove the overhead) or capturing of the traceback of the child process, to have better error reporting.

Disclaimer: I am the original author of joblib.


What's the easiest way to parallelize this code?

Use a PoolExecutor from concurrent.futures. Compare the original code with this, side by side. First, the most concise way to approach this is with executor.map:

...
with ProcessPoolExecutor() as executor:
    for out1, out2, out3 in executor.map(calc_stuff, parameters):
        ...

or broken down by submitting each call individually:

...
with ThreadPoolExecutor() as executor:
    futures = []
    for parameter in parameters:
        futures.append(executor.submit(calc_stuff, parameter))

    for future in futures:
        out1, out2, out3 = future.result() # this will block
        ...

Leaving the context signals the executor to free up resources

You can use threads or processes and use the exact same interface.

A working example

Here is working example code, that will demonstrate the value of :

Put this in a file - futuretest.py:

from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from time import time
from http.client import HTTPSConnection

def processor_intensive(arg):
    def fib(n): # recursive, processor intensive calculation (avoid n > 36)
        return fib(n-1) + fib(n-2) if n > 1 else n
    start = time()
    result = fib(arg)
    return time() - start, result

def io_bound(arg):
    start = time()
    con = HTTPSConnection(arg)
    con.request('GET', '/')
    result = con.getresponse().getcode()
    return time() - start, result

def manager(PoolExecutor, calc_stuff):
    if calc_stuff is io_bound:
        inputs = ('python.org', 'stackoverflow.com', 'stackexchange.com',
                  'noaa.gov', 'parler.com', 'aaronhall.dev')
    else:
        inputs = range(25, 32)
    timings, results = list(), list()
    start = time()
    with PoolExecutor() as executor:
        for timing, result in executor.map(calc_stuff, inputs):
            # put results into correct output list:
            timings.append(timing), results.append(result)
    finish = time()
    print(f'{calc_stuff.__name__}, {PoolExecutor.__name__}')
    print(f'wall time to execute: {finish-start}')
    print(f'total of timings for each call: {sum(timings)}')
    print(f'time saved by parallelizing: {sum(timings) - (finish-start)}')
    print(dict(zip(inputs, results)), end = '\n\n')

def main():
    for computation in (processor_intensive, io_bound):
        for pool_executor in (ProcessPoolExecutor, ThreadPoolExecutor):
            manager(pool_executor, calc_stuff=computation)

if __name__ == '__main__':
    main()

And here's the output for one run of python -m futuretest:

processor_intensive, ProcessPoolExecutor
wall time to execute: 0.7326343059539795
total of timings for each call: 1.8033506870269775
time saved by parallelizing: 1.070716381072998
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}

processor_intensive, ThreadPoolExecutor
wall time to execute: 1.190223217010498
total of timings for each call: 3.3561410903930664
time saved by parallelizing: 2.1659178733825684
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}

io_bound, ProcessPoolExecutor
wall time to execute: 0.533886194229126
total of timings for each call: 1.2977914810180664
time saved by parallelizing: 0.7639052867889404
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}

io_bound, ThreadPoolExecutor
wall time to execute: 0.38941240310668945
total of timings for each call: 1.6049387454986572
time saved by parallelizing: 1.2155263423919678
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}

Processor-intensive analysis

When performing processor intensive calculations in Python, expect the ProcessPoolExecutor to be more performant than the ThreadPoolExecutor.

Due to the Global Interpreter Lock (a.k.a. the GIL), threads cannot use multiple processors, so expect the time for each calculation and the wall time (elapsed real time) to be greater.

IO-bound analysis

On the other hand, when performing IO bound operations, expect ThreadPoolExecutor to be more performant than ProcessPoolExecutor.

Python's threads are real, OS, threads. They can be put to sleep by the operating system and reawakened when their information arrives.

Final thoughts

I suspect that multiprocessing will be slower on Windows, since Windows doesn't support forking so each new process has to take time to launch.

You can nest multiple threads inside multiple processes, but it's recommended to not use multiple threads to spin off multiple processes.

If faced with a heavy processing problem in Python, you can trivially scale with additional processes - but not so much with threading.


very simple example of parallel processing is

from multiprocessing import Process

output1 = list()
output2 = list()
output3 = list()

def yourfunction():
    for j in range(0, 10):
        # calc individual parameter value
        parameter = j * offset
        # call the calculation
        out1, out2, out3 = calc_stuff(parameter=parameter)

        # put results into correct output list
        output1.append(out1)
        output2.append(out2)
        output3.append(out3)

if __name__ == '__main__':
    p = Process(target=pa.yourfunction, args=('bob',))
    p.start()
    p.join()

from joblib import Parallel, delayed
import multiprocessing

inputs = range(10) 
def processInput(i):
    return i * i

num_cores = multiprocessing.cpu_count()

results = Parallel(n_jobs=num_cores)(delayed(processInput)(i) for i in inputs)
print(results)

The above works beautifully on my machine (Ubuntu, package joblib was pre-installed, but can be installed via pip install joblib).

Taken from https://blog.dominodatalab.com/simple-parallelization/


This could be useful when implementing multiprocessing and parallel/ distributed computing in Python.

YouTube tutorial on using techila package

Techila is a distributed computing middleware, which integrates directly with Python using the techila package. The peach function in the package can be useful in parallelizing loop structures. (Following code snippet is from the Techila Community Forums)

techila.peach(funcname = 'theheavyalgorithm', # Function that will be called on the compute nodes/ Workers
    files = 'theheavyalgorithm.py', # Python-file that will be sourced on Workers
    jobs = jobcount # Number of Jobs in the Project
    )