[python] multiprocessing.Pool: When to use apply, apply_async or map?

Here is an overview in a table format in order to show the differences between Pool.apply, Pool.apply_async, Pool.map and Pool.map_async. When choosing one, you have to take multi-args, concurrency, blocking, and ordering into account:

                  | Multi-args   Concurrence    Blocking     Ordered-results
---------------------------------------------------------------------
Pool.map          | no           yes            yes          yes
Pool.map_async    | no           yes            no           yes
Pool.apply        | yes          no             yes          no
Pool.apply_async  | yes          yes            no           no
Pool.starmap      | yes          yes            yes          yes
Pool.starmap_async| yes          yes            no           no

Notes:

  • Pool.imap and Pool.imap_async – lazier version of map and map_async.

  • Pool.starmap method, very much similar to map method besides it acceptance of multiple arguments.

  • Async methods submit all the processes at once and retrieve the results once they are finished. Use get method to obtain the results.

  • Pool.map(or Pool.apply)methods are very much similar to Python built-in map(or apply). They block the main process until all the processes complete and return the result.

Examples:

map

Is called for a list of jobs in one time

results = pool.map(func, [1, 2, 3])

apply

Can only be called for one job

for x, y in [[1, 1], [2, 2]]:
    results.append(pool.apply(func, (x, y)))

def collect_result(result):
    results.append(result)

map_async

Is called for a list of jobs in one time

pool.map_async(func, jobs, callback=collect_result)

apply_async

Can only be called for one job and executes a job in the background in parallel

for x, y in [[1, 1], [2, 2]]:
    pool.apply_async(worker, (x, y), callback=collect_result)

starmap

Is a variant of pool.map which support multiple arguments

pool.starmap(func, [(1, 1), (2, 1), (3, 1)])

starmap_async

A combination of starmap() and map_async() that iterates over iterable of iterables and calls func with the iterables unpacked. Returns a result object.

pool.starmap_async(calculate_worker, [(1, 1), (2, 1), (3, 1)], callback=collect_result)

Reference:

Find complete documentation here: https://docs.python.org/3/library/multiprocessing.html

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to multithreading

How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Waiting until the task finishes What is the difference between Task.Run() and Task.Factory.StartNew() Why is setState in reactjs Async instead of Sync? What exactly is std::atomic? Calling async method on button click WAITING at sun.misc.Unsafe.park(Native Method) How to use background thread in swift? What is the use of static synchronized method in java? Locking pattern for proper use of .NET MemoryCache

Examples related to concurrency

WAITING at sun.misc.Unsafe.park(Native Method) What is the Swift equivalent to Objective-C's "@synchronized"? Custom thread pool in Java 8 parallel stream How to check if another instance of my shell script is running How to use the CancellationToken property? What's the difference between a Future and a Promise? Why use a ReentrantLock if one can use synchronized(this)? NSOperation vs Grand Central Dispatch What's the difference between Thread start() and Runnable run() multiprocessing.Pool: When to use apply, apply_async or map?

Examples related to multiprocessing

Passing multiple parameters to pool.map() function in Python Dead simple example of using Multiprocessing Queue, Pool and Locking Using multiprocessing.Process with a maximum number of simultaneous processes Multiprocessing a for loop? RuntimeError on windows trying python multiprocessing How to use multiprocessing queue in Python? Shared-memory objects in multiprocessing Python multiprocessing PicklingError: Can't pickle <type 'function'> multiprocessing.Pool: When to use apply, apply_async or map? How to troubleshoot an "AttributeError: __exit__" in multiproccesing in Python?