As already pointed out, b += 1
updates b
in-place, while a = a + 1
computes a + 1
and then assigns the name a
to the result (now a
does not refer to a row of A
anymore).
To understand the +=
operator properly though, we need also to understand the concept of mutable versus immutable objects. Consider what happens when we leave out the .reshape
:
C = np.arange(12)
for c in C:
c += 1
print(C) # [ 0 1 2 3 4 5 6 7 8 9 10 11]
We see that C
is not updated, meaning that c += 1
and c = c + 1
are equivalent. This is because now C
is a 1D array (C.ndim == 1
), and so when iterating over C
, each integer element is pulled out and assigned to c
.
Now in Python, integers are immutable, meaning that in-place updates are not allowed, effectively transforming c += 1
into c = c + 1
, where c
now refers to a new integer, not coupled to C
in any way. When you loop over the reshaped arrays, whole rows (np.ndarray
's) are assigned to b
(and a
) at a time, which are mutable objects, meaning that you are allowed to stick in new integers at will, which happens when you do a += 1
.
It should be mentioned that though +
and +=
are meant to be related as described above (and very much usually are), any type can implement them any way it wants by defining the __add__
and __iadd__
methods, respectively.