from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
model.fit(train_x, train_y,validation_split = 0.1, epochs=50, batch_size=4)
y_pred=model.predict(test_x,batch_size=15)
cm =confusion_matrix(test_y.argmax(axis=1), y_pred.argmax(axis=1))
index = ['neutral','happy','sad']
columns = ['neutral','happy','sad']
cm_df = pd.DataFrame(cm,columns,index)
plt.figure(figsize=(10,6))
sns.heatmap(cm_df, annot=True)