Since struct instances are allocated on stack, and class instances are allocated on heap, structs can sometimes be drastically faster.
However, you should always measure it yourself and decide based on your unique use case.
Consider the following example, which demonstrates 2 strategies of wrapping Int
data type using struct
and class
. I am using 10 repeated values are to better reflect real world, where you have multiple fields.
class Int10Class {
let value1, value2, value3, value4, value5, value6, value7, value8, value9, value10: Int
init(_ val: Int) {
self.value1 = val
self.value2 = val
self.value3 = val
self.value4 = val
self.value5 = val
self.value6 = val
self.value7 = val
self.value8 = val
self.value9 = val
self.value10 = val
}
}
struct Int10Struct {
let value1, value2, value3, value4, value5, value6, value7, value8, value9, value10: Int
init(_ val: Int) {
self.value1 = val
self.value2 = val
self.value3 = val
self.value4 = val
self.value5 = val
self.value6 = val
self.value7 = val
self.value8 = val
self.value9 = val
self.value10 = val
}
}
func + (x: Int10Class, y: Int10Class) -> Int10Class {
return IntClass(x.value + y.value)
}
func + (x: Int10Struct, y: Int10Struct) -> Int10Struct {
return IntStruct(x.value + y.value)
}
Performance is measured using
// Measure Int10Class
measure("class (10 fields)") {
var x = Int10Class(0)
for _ in 1...10000000 {
x = x + Int10Class(1)
}
}
// Measure Int10Struct
measure("struct (10 fields)") {
var y = Int10Struct(0)
for _ in 1...10000000 {
y = y + Int10Struct(1)
}
}
func measure(name: String, @noescape block: () -> ()) {
let t0 = CACurrentMediaTime()
block()
let dt = CACurrentMediaTime() - t0
print("\(name) -> \(dt)")
}
Code can be found at https://github.com/knguyen2708/StructVsClassPerformance
UPDATE (27 Mar 2018):
As of Swift 4.0, Xcode 9.2, running Release build on iPhone 6S, iOS 11.2.6, Swift Compiler setting is -O -whole-module-optimization
:
class
version took 2.06 secondsstruct
version took 4.17e-08 seconds (50,000,000 times faster)(I no longer average multiple runs, as variances are very small, under 5%)
Note: the difference is a lot less dramatic without whole module optimization. I'd be glad if someone can point out what the flag actually does.
UPDATE (7 May 2016):
As of Swift 2.2.1, Xcode 7.3, running Release build on iPhone 6S, iOS 9.3.1, averaged over 5 runs, Swift Compiler setting is -O -whole-module-optimization
:
class
version took 2.159942142sstruct
version took 5.83E-08s (37,000,000 times faster)Note: as someone mentioned that in real-world scenarios, there will be likely more than 1 field in a struct, I have added tests for structs/classes with 10 fields instead of 1. Surprisingly, results don't vary much.
ORIGINAL RESULTS (1 June 2014):
(Ran on struct/class with 1 field, not 10)
As of Swift 1.2, Xcode 6.3.2, running Release build on iPhone 5S, iOS 8.3, averaged over 5 runs
class
version took 9.788332333sstruct
version took 0.010532942s (900 times faster)OLD RESULTS (from unknown time)
(Ran on struct/class with 1 field, not 10)
With release build on my MacBook Pro:
class
version took 1.10082 secstruct
version took 0.02324 sec (50 times faster)