[python] Appending a list or series to a pandas DataFrame as a row?

So I have initialized an empty pandas DataFrame and I would like to iteratively append lists (or Series) as rows in this DataFrame. What is the best way of doing this?

This question is related to python pandas append dataframe

The answer is


Could you do something like this?

>>> import pandas as pd
>>> df = pd.DataFrame(columns=['col1', 'col2'])
>>> df = df.append(pd.Series(['a', 'b'], index=['col1','col2']), ignore_index=True)
>>> df = df.append(pd.Series(['d', 'e'], index=['col1','col2']), ignore_index=True) 
>>> df
  col1 col2
0    a    b
1    d    e

Does anyone have a more elegant solution?


As mentioned here - https://kite.com/python/answers/how-to-append-a-list-as-a-row-to-a-pandas-dataframe-in-python, you'll need to first convert the list to a series then append the series to dataframe.

df = pd.DataFrame([[1, 2], [3, 4]], columns = ["a", "b"])
to_append = [5, 6]
a_series = pd.Series(to_append, index = df.columns)
df = df.append(a_series, ignore_index=True)

Following onto Mike Chirico's answer... if you want to append a list after the dataframe is already populated...

>>> list = [['f','g']]
>>> df = df.append(pd.DataFrame(list, columns=['col1','col2']),ignore_index=True)
>>> df
  col1 col2
0    a    b
1    d    e
2    f    g

df = pd.DataFrame(columns=list("ABC"))
df.loc[len(df)] = [1,2,3]

simply use loc:

>>> df
     A  B  C
one  1  2  3
>>> df.loc["two"] = [4,5,6]
>>> df
     A  B  C
one  1  2  3
two  4  5  6

Consider an array A of N x 2 dimensions. To add one more row, use the following.

A.loc[A.shape[0]] = [3,4]

Converting the list to a data frame within the append function works, also when applied in a loop

import pandas as pd
mylist = [1,2,3]
df = pd.DataFrame()
df = df.append(pd.DataFrame(data[mylist]))

There are several ways to append a list to a Pandas Dataframe in Python. Let's consider the following dataframe and list:

import pandas as pd
# Dataframe
df = pd.DataFrame([[1, 2], [3, 4]], columns = ["col1", "col2"])
# List to append
list = [5, 6]

Option 1: append the list at the end of the dataframe with ?pandas.DataFrame.loc.

df.loc[len(df)] = list

Option 2: convert the list to dataframe and append with ?pandas.DataFrame.append().

df = df.append(pd.DataFrame([list], columns=df.columns), ignore_index=True)

Option 3: convert the list to series and append with ??pandas.DataFrame.append()?.

df = df.append(pd.Series(list, index = df.columns), ignore_index=True)

Each of the above options should output something like:

>>> print (df)
   col1  col2
0     1     2
1     3     4
2     5     6

Reference : How to append a list as a row to a Pandas DataFrame in Python?


Here's a simple and dumb solution:

>>> import pandas as pd
>>> df = pd.DataFrame()
>>> df = df.append({'foo':1, 'bar':2}, ignore_index=True)

If you want to add a Series and use the Series' index as columns of the DataFrame, you only need to append the Series between brackets:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame()

In [3]: row=pd.Series([1,2,3],["A","B","C"])

In [4]: row
Out[4]: 
A    1
B    2
C    3
dtype: int64

In [5]: df.append([row],ignore_index=True)
Out[5]: 
   A  B  C
0  1  2  3

[1 rows x 3 columns]

Whitout the ignore_index=True you don't get proper index.


The simplest way:

my_list = [1,2,3,4,5]
df['new_column'] = pd.Series(my_list).values

Edit:

Don't forget that the length of the new list should be the same of the corresponding Dataframe.


Here's a function that, given an already created dataframe, will append a list as a new row. This should probably have error catchers thrown in, but if you know exactly what you're adding then it shouldn't be an issue.

import pandas as pd
import numpy as np

def addRow(df,ls):
    """
    Given a dataframe and a list, append the list as a new row to the dataframe.

    :param df: <DataFrame> The original dataframe
    :param ls: <list> The new row to be added
    :return: <DataFrame> The dataframe with the newly appended row
    """

    numEl = len(ls)

    newRow = pd.DataFrame(np.array(ls).reshape(1,numEl), columns = list(df.columns))

    df = df.append(newRow, ignore_index=True)

    return df

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to pandas

xlrd.biffh.XLRDError: Excel xlsx file; not supported Pandas Merging 101 How to increase image size of pandas.DataFrame.plot in jupyter notebook? Trying to merge 2 dataframes but get ValueError Python Pandas User Warning: Sorting because non-concatenation axis is not aligned How to show all of columns name on pandas dataframe? Pandas/Python: Set value of one column based on value in another column Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Python convert object to float

Examples related to append

List append() in for loop ValueError: all the input arrays must have same number of dimensions Append a tuple to a list - what's the difference between two ways? How merge two objects array in angularjs? How to add an element at the end of an array? Appending a list or series to a pandas DataFrame as a row? Can someone explain how to append an element to an array in C programming? How to append elements at the end of ArrayList in Java? Append value to empty vector in R? How to append new data onto a new line

Examples related to dataframe

Trying to merge 2 dataframes but get ValueError How to show all of columns name on pandas dataframe? Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Display all dataframe columns in a Jupyter Python Notebook How to convert column with string type to int form in pyspark data frame? Display/Print one column from a DataFrame of Series in Pandas Binning column with python pandas Selection with .loc in python Set value to an entire column of a pandas dataframe