[c++] Passing capturing lambda as function pointer

Is it possible to pass a lambda function as a function pointer? If so, I must be doing something incorrectly because I am getting a compile error.

Consider the following example

using DecisionFn = bool(*)();

class Decide
{
public:
    Decide(DecisionFn dec) : _dec{dec} {}
private:
    DecisionFn _dec;
};

int main()
{
    int x = 5;
    Decide greaterThanThree{ [x](){ return x > 3; } };
    return 0;
}

When I try to compile this, I get the following compilation error:

In function 'int main()':
17:31: error: the value of 'x' is not usable in a constant expression
16:9:  note: 'int x' is not const
17:53: error: no matching function for call to 'Decide::Decide(<brace-enclosed initializer list>)'
17:53: note: candidates are:
9:5:   note: Decide::Decide(DecisionFn)
9:5:   note: no known conversion for argument 1 from 'main()::<lambda()>' to 'DecisionFn {aka bool (*)()}'
6:7:   note: constexpr Decide::Decide(const Decide&)
6:7:   note: no known conversion for argument 1 from 'main()::<lambda()>' to 'const Decide&'
6:7:   note: constexpr Decide::Decide(Decide&&)
6:7:   note: no known conversion for argument 1 from 'main()::<lambda()>' to 'Decide&&'

That's one heck of an error message to digest, but I think what I'm getting out of it is that the lambda cannot be treated as a constexpr so therefore I cannot pass it as a function pointer? I've tried making x const as well, but that doesn't seem to help.

This question is related to c++ c++11 lambda function-pointers

The answer is


Shafik Yaghmour's answer correctly explains why the lambda cannot be passed as a function pointer if it has a capture. I'd like to show two simple fixes for the problem.

  1. Use std::function instead of raw function pointers.

    This is a very clean solution. Note however that it includes some additional overhead for the type erasure (probably a virtual function call).

    #include <functional>
    #include <utility>
    
    struct Decide
    {
      using DecisionFn = std::function<bool()>;
      Decide(DecisionFn dec) : dec_ {std::move(dec)} {}
      DecisionFn dec_;
    };
    
    int
    main()
    {
      int x = 5;
      Decide greaterThanThree { [x](){ return x > 3; } };
    }
    
  2. Use a lambda expression that doesn't capture anything.

    Since your predicate is really just a boolean constant, the following would quickly work around the current issue. See this answer for a good explanation why and how this is working.

    // Your 'Decide' class as in your post.
    
    int
    main()
    {
      int x = 5;
      Decide greaterThanThree {
        (x > 3) ? [](){ return true; } : [](){ return false; }
      };
    }
    

A shortcut for using a lambda with as a C function pointer is this:

"auto fun = +[](){}"

Using Curl as exmample (curl debug info)

auto callback = +[](CURL* handle, curl_infotype type, char* data, size_t size, void*){ //add code here :-) };
curl_easy_setopt(curlHande, CURLOPT_VERBOSE, 1L);
curl_easy_setopt(curlHande,CURLOPT_DEBUGFUNCTION,callback);

Not a direct answer, but a slight variation to use the "functor" template pattern to hide away the specifics of the lambda type and keeps the code nice and simple.

I was not sure how you wanted to use the decide class so I had to extend the class with a function that uses it. See full example here: https://godbolt.org/z/jtByqE

The basic form of your class might look like this:

template <typename Functor>
class Decide
{
public:
    Decide(Functor dec) : _dec{dec} {}
private:
    Functor _dec;
};

Where you pass the type of the function in as part of the class type used like:

auto decide_fc = [](int x){ return x > 3; };
Decide<decltype(decide_fc)> greaterThanThree{decide_fc};

Again, I was not sure why you are capturing x it made more sense (to me) to have a parameter that you pass in to the lambda) so you can use like:

int result = _dec(5); // or whatever value

See the link for a complete example


As it was mentioned by the others you can substitute Lambda function instead of function pointer. I am using this method in my C++ interface to F77 ODE solver RKSUITE.

//C interface to Fortran subroutine UT
extern "C"  void UT(void(*)(double*,double*,double*),double*,double*,double*,
double*,double*,double*,int*);

// C++ wrapper which calls extern "C" void UT routine
static  void   rk_ut(void(*)(double*,double*,double*),double*,double*,double*,
double*,double*,double*,int*);

//  Call of rk_ut with lambda passed instead of function pointer to derivative
//  routine
mathlib::RungeKuttaSolver::rk_ut([](double* T,double* Y,double* YP)->void{YP[0]=Y[1]; YP[1]= -Y[0];}, TWANT,T,Y,YP,YMAX,WORK,UFLAG);

Lambda expressions, even captured ones, can be handled as a function pointer (pointer to member function).

It is tricky because an lambda expression is not a simple function. It is actually an object with an operator().

When you are creative, you can use this! Think of an "function" class in style of std::function. If you save the object you also can use the function pointer.

To use the function pointer, you can use the following:

int first = 5;
auto lambda = [=](int x, int z) {
    return x + z + first;
};
int(decltype(lambda)::*ptr)(int, int)const = &decltype(lambda)::operator();
std::cout << "test = " << (lambda.*ptr)(2, 3) << std::endl;

To build a class that can start working like a "std::function", first you need a class/struct than can store object and function pointer. Also you need an operator() to execute it:

// OT => Object Type
// RT => Return Type
// A ... => Arguments
template<typename OT, typename RT, typename ... A>
struct lambda_expression {
    OT _object;
    RT(OT::*_function)(A...)const;

    lambda_expression(const OT & object)
        : _object(object), _function(&decltype(_object)::operator()) {}

    RT operator() (A ... args) const {
        return (_object.*_function)(args...);
    }
};

With this you can now run captured, non-captured lambdas, just like you are using the original:

auto capture_lambda() {
    int first = 5;
    auto lambda = [=](int x, int z) {
        return x + z + first;
    };
    return lambda_expression<decltype(lambda), int, int, int>(lambda);
}

auto noncapture_lambda() {
    auto lambda = [](int x, int z) {
        return x + z;
    };
    return lambda_expression<decltype(lambda), int, int, int>(lambda);
}

void refcapture_lambda() {
    int test;
    auto lambda = [&](int x, int z) {
        test = x + z;
    };
    lambda_expression<decltype(lambda), void, int, int>f(lambda);
    f(2, 3);

    std::cout << "test value = " << test << std::endl;
}

int main(int argc, char **argv) {
    auto f_capture = capture_lambda();
    auto f_noncapture = noncapture_lambda();

    std::cout << "main test = " << f_capture(2, 3) << std::endl;
    std::cout << "main test = " << f_noncapture(2, 3) << std::endl;

    refcapture_lambda();

    system("PAUSE");
    return 0;
}

This code works with VS2015

Update 04.07.17:

template <typename CT, typename ... A> struct function
: public function<decltype(&CT::operator())(A...)> {};

template <typename C> struct function<C> {
private:
    C mObject;

public:
    function(const C & obj)
        : mObject(obj) {}

    template<typename... Args> typename 
    std::result_of<C(Args...)>::type operator()(Args... a) {
        return this->mObject.operator()(a...);
    }

    template<typename... Args> typename 
    std::result_of<const C(Args...)>::type operator()(Args... a) const {
        return this->mObject.operator()(a...);
    }
};

namespace make {
    template<typename C> auto function(const C & obj) {
        return ::function<C>(obj);
    }
}

int main(int argc, char ** argv) {
   auto func = make::function([](int y, int x) { return x*y; });
   std::cout << func(2, 4) << std::endl;
   system("PAUSE");
   return 0;
}

A simular answer but i made it so you don't have to specify the type of returned pointer (note that the generic version requires C++20):

#include <iostream>


template<typename Function>
struct function_traits;

template <typename Ret, typename... Args>
struct function_traits<Ret(Args...)> {
    typedef Ret(*ptr)(Args...);
};

template <typename Ret, typename... Args>
struct function_traits<Ret(*const)(Args...)> : function_traits<Ret(Args...)> {};

template <typename Cls, typename Ret, typename... Args>
struct function_traits<Ret(Cls::*)(Args...) const> : function_traits<Ret(Args...)> {};

using voidfun = void(*)();

template <typename F>
voidfun lambda_to_void_function(F lambda) {
    static auto lambda_copy = lambda;

    return []() {
        lambda_copy();
    };
}

// requires C++20
template <typename F>
auto lambda_to_pointer(F lambda) -> typename function_traits<decltype(&F::operator())>::ptr {
    static auto lambda_copy = lambda;
    
    return []<typename... Args>(Args... args) {
        return lambda_copy(args...);
    };
}



int main() {
    int num;

    void(*foo)() = lambda_to_void_function([&num]() {
        num = 1234;
    });
    foo();
    std::cout << num << std::endl; // 1234

    int(*bar)(int) = lambda_to_pointer([&](int a) -> int {
        num = a;
        return a;
    });
    std::cout << bar(4321) << std::endl; // 4321
    std::cout << num << std::endl; // 4321
}

Capturing lambdas cannot be converted to function pointers, as this answer pointed out.

However, it is often quite a pain to supply a function pointer to an API that only accepts one. The most often cited method to do so is to provide a function and call a static object with it.

static Callable callable;
static bool wrapper()
{
    return callable();
}

This is tedious. We take this idea further and automate the process of creating wrapper and make life much easier.

#include<type_traits>
#include<utility>

template<typename Callable>
union storage
{
    storage() {}
    std::decay_t<Callable> callable;
};

template<int, typename Callable, typename Ret, typename... Args>
auto fnptr_(Callable&& c, Ret (*)(Args...))
{
    static bool used = false;
    static storage<Callable> s;
    using type = decltype(s.callable);

    if(used)
        s.callable.~type();
    new (&s.callable) type(std::forward<Callable>(c));
    used = true;

    return [](Args... args) -> Ret {
        return Ret(s.callable(std::forward<Args>(args)...));
    };
}

template<typename Fn, int N = 0, typename Callable>
Fn* fnptr(Callable&& c)
{
    return fnptr_<N>(std::forward<Callable>(c), (Fn*)nullptr);
}

And use it as

void foo(void (*fn)())
{
    fn();   
}

int main()
{
    int i = 42;
    auto fn = fnptr<void()>([i]{std::cout << i;});
    foo(fn);  // compiles!
}

Live

This is essentially declaring an anonymous function at each occurrence of fnptr.

Note that invocations of fnptr overwrite the previously written callable given callables of the same type. We remedy this, to a certain degree, with the int parameter N.

std::function<void()> func1, func2;
auto fn1 = fnptr<void(), 1>(func1);
auto fn2 = fnptr<void(), 2>(func2);  // different function

While the template approach is clever for various reasons, it is important to remember the lifecycle of the lambda and the captured variables. If any form of a lambda pointer is is going to be used and the lambda is not a downward continuation, then only a copying [=] lambda should used. I.e., even then, capturing a pointer to a variable on the stack is UNSAFE if the lifetime of those captured pointers (stack unwind) is shorter than the lifetime of the lambda.

A simpler solution for capturing a lambda as a pointer is:

auto pLamdba = new std::function<...fn-sig...>([=](...fn-sig...){...});

e.g., new std::function<void()>([=]() -> void {...}

Just remember to later delete pLamdba so ensure that you don't leak the lambda memory. Secret to realize here is that lambdas can capture lambdas (ask yourself how that works) and also that in order for std::function to work generically the lambda implementation needs to contain sufficient internal information to provide access to the size of the lambda (and captured) data (which is why the delete should work [running destructors of captured types]).


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to c++11

Remove from the beginning of std::vector Converting std::__cxx11::string to std::string What exactly is std::atomic? C++ How do I convert a std::chrono::time_point to long and back Passing capturing lambda as function pointer undefined reference to 'std::cout' Is it possible to use std::string in a constexpr? How does #include <bits/stdc++.h> work in C++? error::make_unique is not a member of ‘std’ no match for ‘operator<<’ in ‘std::operator

Examples related to lambda

Java 8 optional: ifPresent return object orElseThrow exception How to properly apply a lambda function into a pandas data frame column What are functional interfaces used for in Java 8? Java 8 lambda get and remove element from list Variable used in lambda expression should be final or effectively final Filter values only if not null using lambda in Java8 forEach loop Java 8 for Map entry set Java 8 Lambda Stream forEach with multiple statements Java 8 stream map to list of keys sorted by values Task.Run with Parameter(s)?

Examples related to function-pointers

Passing capturing lambda as function pointer How can I pass a member function where a free function is expected? Using generic std::function objects with member functions in one class Function pointer as parameter Function pointer to member function Callback functions in C++ Python function pointer How can I call a function using a function pointer? Understanding typedefs for function pointers in C Calling C++ class methods via a function pointer