[c++] Is it possible to print a variable's type in standard C++?

For example:

int a = 12;
cout << typeof(a) << endl;

Expected output:

int

This question is related to c++ variables c++11 typeof

The answer is


Howard Hinnant used magic numbers to extract type name. ??? suggested string prefix and suffix. But prefix/suffix keep changing. With “probe_type” type_name automatically calculates prefix and suffix sizes for “probe_type” to extract type name:

#include <string_view>
using namespace std;

namespace typeName {
 template <typename T>
  constexpr string_view wrapped_type_name () {
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return  __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return  __FUNCSIG__;
#endif
  }

  class probe_type;
  constexpr string_view probe_type_name ("typeName::probe_type");
  constexpr string_view probe_type_name_elaborated ("class typeName::probe_type");
  constexpr string_view probe_type_name_used (wrapped_type_name<probe_type> ().find (probe_type_name_elaborated) != -1 ? probe_type_name_elaborated : probe_type_name);

  constexpr size_t prefix_size () {
    return wrapped_type_name<probe_type> ().find (probe_type_name_used);
  }

  constexpr size_t suffix_size () {
    return wrapped_type_name<probe_type> ().length () - prefix_size () - probe_type_name_used.length ();
  }

  template <typename T>
  string_view type_name () {
    constexpr auto type_name = wrapped_type_name<T> ();

    return type_name.substr (prefix_size (), type_name.length () - prefix_size () - suffix_size ());
  }
}

#include <iostream>

using typeName::type_name;
using typeName::probe_type;

class test;

int main () {
  cout << type_name<class test> () << endl;

  cout << type_name<const int*&> () << endl;
  cout << type_name<unsigned int> () << endl;

  const int ic = 42;
  const int* pic = &ic;
  const int*& rpic = pic;
  cout << type_name<decltype(ic)> () << endl;
  cout << type_name<decltype(pic)> () << endl;
  cout << type_name<decltype(rpic)> () << endl;

  cout << type_name<probe_type> () << endl;
}

Output

gcc 10.2:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

clang 11.0.0:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

VS 2019 version 16.7.6:

class test
const int*&
unsigned int
const int
const int*
const int*&
class typeName::probe_type

The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


You may also use c++filt with option -t (type) to demangle the type name:

#include <iostream>
#include <typeinfo>
#include <string>

using namespace std;

int main() {
  auto x = 1;
  string my_type = typeid(x).name();
  system(("echo " + my_type + " | c++filt -t").c_str());
  return 0;
}

Tested on linux only.


Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


A more generic solution without function overloading than my previous one:

template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";

    return Type;}

Here MyClass is user defined class. More conditions can be added here as well.

Example:

#include <iostream>



class MyClass{};


template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";
    return Type;}


int main(){;
    int a=0;
    std::string s="";
    MyClass my;
    std::cout<<TypeOf(a)<<std::endl;
    std::cout<<TypeOf(s)<<std::endl;
    std::cout<<TypeOf(my)<<std::endl;

    return 0;}

Output:

int
String
MyClass

Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


In C++11, we have decltype. There is no way in standard c++ to display exact type of variable declared using decltype. We can use boost typeindex i.e type_id_with_cvr (cvr stands for const, volatile, reference) to print type like below.

#include <iostream>
#include <boost/type_index.hpp>

using namespace std;
using boost::typeindex::type_id_with_cvr;

int main() {
  int i = 0;
  const int ci = 0;
  cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
  cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
  cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
  cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
  cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
  cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
  return 0;
}

Copying from this answer: https://stackoverflow.com/a/56766138/11502722

I was able to get this somewhat working for C++ static_assert(). The wrinkle here is that static_assert() only accepts string literals; constexpr string_view will not work. You will need to accept extra text around the typename, but it works:

template<typename T>
constexpr void assertIfTestFailed()
{
#ifdef __clang__
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(__GNUC__)
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(_MSC_VER)
    static_assert(testFn<T>(), "Test failed on this used type: " __FUNCSIG__);
#else
    static_assert(testFn<T>(), "Test failed on this used type (see surrounding logged error for details).");
#endif
    }
}

MSVC Output:

error C2338: Test failed on this used type: void __cdecl assertIfTestFailed<class BadType>(void)
... continued trace of where the erroring code came from ...

The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

According to Howard's solution, if you don't like the magic number, I think this is a good way to represent and it looks intuitive:

#include <string_view>

template <typename T>
constexpr auto type_name() noexcept {
  std::string_view name = "Error: unsupported compiler", prefix, suffix;
#ifdef __clang__
  name = __PRETTY_FUNCTION__;
  prefix = "auto type_name() [T = ";
  suffix = "]";
#elif defined(__GNUC__)
  name = __PRETTY_FUNCTION__;
  prefix = "constexpr auto type_name() [with T = ";
  suffix = "]";
#elif defined(_MSC_VER)
  name = __FUNCSIG__;
  prefix = "auto __cdecl type_name<";
  suffix = ">(void) noexcept";
#endif
  name.remove_prefix(prefix.size());
  name.remove_suffix(suffix.size());
  return name;
}

Demo.


Another take on @???'s answer (originally ), making less assumptions about the prefix and suffix specifics, and inspired by @Val's answer - but without polluting the global namespace; without any conditions; and hopefully easier to read.

The popular compilers provide a macro with the current function's signature. Now, functions are templatable; so the signature contains the template arguments. So, the basic approach is: Given a type, be in a function with that type as a template argument.

Unfortunately, the type name is wrapped in text describing the function, which is different between compilers. For example, with GCC, the signature of template <typename T> int foo() with type double is: int foo() [T = double].

So, how do you get rid of the wrapper text? @HowardHinnant's solution is the shortest and most "direct": Just use per-compiler magic numbers to remove a prefix and a suffix. But obviously, that's very brittle; and nobody likes magic numbers in their code. Instead, you get the macro value for a type with a known name, you can determine what prefix and suffix constitute the wrapping.

#include <string_view>

template <typename T> constexpr std::string_view type_name();

template <>
constexpr std::string_view type_name<void>()
{ return "void"; }

namespace detail {

using type_name_prober = void;

template <typename T>
constexpr std::string_view wrapped_type_name() 
{
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return __FUNCSIG__;
#else
#error "Unsupported compiler"
#endif
}

constexpr std::size_t wrapped_type_name_prefix_length() { 
    return wrapped_type_name<type_name_prober>().find(type_name<type_name_prober>()); 
}

constexpr std::size_t wrapped_type_name_suffix_length() { 
    return wrapped_type_name<type_name_prober>().length() 
        - wrapped_type_name_prefix_length() 
        - type_name<type_name_prober>().length();
}

} // namespace detail

template <typename T>
constexpr std::string_view type_name() {
    constexpr auto wrapped_name = detail::wrapped_type_name<T>();
    constexpr auto prefix_length = detail::wrapped_type_name_prefix_length();
    constexpr auto suffix_length = detail::wrapped_type_name_suffix_length();
    constexpr auto type_name_length = wrapped_name.length() - prefix_length - suffix_length;
    return wrapped_name.substr(prefix_length, type_name_length);
}

See it on GodBolt. This should be working with MSVC as well.


Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

Another take on @???'s answer (originally ), making less assumptions about the prefix and suffix specifics, and inspired by @Val's answer - but without polluting the global namespace; without any conditions; and hopefully easier to read.

The popular compilers provide a macro with the current function's signature. Now, functions are templatable; so the signature contains the template arguments. So, the basic approach is: Given a type, be in a function with that type as a template argument.

Unfortunately, the type name is wrapped in text describing the function, which is different between compilers. For example, with GCC, the signature of template <typename T> int foo() with type double is: int foo() [T = double].

So, how do you get rid of the wrapper text? @HowardHinnant's solution is the shortest and most "direct": Just use per-compiler magic numbers to remove a prefix and a suffix. But obviously, that's very brittle; and nobody likes magic numbers in their code. Instead, you get the macro value for a type with a known name, you can determine what prefix and suffix constitute the wrapping.

#include <string_view>

template <typename T> constexpr std::string_view type_name();

template <>
constexpr std::string_view type_name<void>()
{ return "void"; }

namespace detail {

using type_name_prober = void;

template <typename T>
constexpr std::string_view wrapped_type_name() 
{
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return __FUNCSIG__;
#else
#error "Unsupported compiler"
#endif
}

constexpr std::size_t wrapped_type_name_prefix_length() { 
    return wrapped_type_name<type_name_prober>().find(type_name<type_name_prober>()); 
}

constexpr std::size_t wrapped_type_name_suffix_length() { 
    return wrapped_type_name<type_name_prober>().length() 
        - wrapped_type_name_prefix_length() 
        - type_name<type_name_prober>().length();
}

} // namespace detail

template <typename T>
constexpr std::string_view type_name() {
    constexpr auto wrapped_name = detail::wrapped_type_name<T>();
    constexpr auto prefix_length = detail::wrapped_type_name_prefix_length();
    constexpr auto suffix_length = detail::wrapped_type_name_suffix_length();
    constexpr auto type_name_length = wrapped_name.length() - prefix_length - suffix_length;
    return wrapped_name.substr(prefix_length, type_name_length);
}

See it on GodBolt. This should be working with MSVC as well.


Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

Very ugly but does the trick if you only want compile time info (e.g. for debugging):

auto testVar = std::make_tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;

Returns:

Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::tuple<int, double, const char*>'

As I challenge I decided to test how far can one go with platform-independent (hopefully) template trickery.

The names are assembled completely at compilation time. (Which means typeid(T).name() couldn't be used, thus you have to explicitly provide names for non-compound types. Otherwise placeholders will be displayed instead.)

Example usage:

TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.

TYPE_NAME(std::string)

int main()
{
    // A simple case
    std::cout << type_name<void(*)(int)> << '\n';
    // -> `void (*)(int)`

    // Ugly mess case
    // Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
    std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
    // -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`

    // A case with undefined types
    //  If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
    std::cout << type_name<std::ostream (*)(int, short)> << '\n';
    // -> `class? (*)(int,??)`
    // With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}

Code:

#include <type_traits>
#include <utility>

static constexpr std::size_t max_str_lit_len = 256;

template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
    if constexpr(I < N)
        return str[I];
    else
        return '\0';
}

constexpr std::size_t sl_len(const char *str)
{
    for (std::size_t i = 0; i < max_str_lit_len; i++)
        if (str[i] == '\0')
            return i;
    return 0;
}

template <char ...C> struct str_lit
{
    static constexpr char value[] {C..., '\0'};
    static constexpr int size = sl_len(value);

    template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
    template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
    template <typename ...P> using concat = typename concat_impl<P...>::type;
};

template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
    using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;

#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)

template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
    return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}

template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
    static constexpr auto func()
    {
        if constexpr (N >= cexpr_pow<10,X>::value)
            return num_to_str_lit_impl<N, X+1>::func();
        else
            return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
    }
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());


using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;

using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;

template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;

template <typename T> struct primitive_type_name {using value = unk;};

template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum  = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};

template <typename T> struct type_name_impl;

template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
                                                                               typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
                                            typename primitive_type_name<T>::value,
                                            typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;

template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;

template <typename T> struct type_name_impl
{
    using l = typename primitive_type_name<T>::value::template concat<spa>;
    using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con>,
                                 con::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<vol>,
                                 vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con_vol>,
                                 con_vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, ast>,
                                 typename type_name_impl<T>::l::template concat<     ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp, amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
                                 typename type_name_impl<T>::l::template concat<     type_name_lit<C>, nsp, ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<type_name_lit<P1>,
                          com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};

#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};

According to Howard's solution, if you don't like the magic number, I think this is a good way to represent and it looks intuitive:

#include <string_view>

template <typename T>
constexpr auto type_name() noexcept {
  std::string_view name = "Error: unsupported compiler", prefix, suffix;
#ifdef __clang__
  name = __PRETTY_FUNCTION__;
  prefix = "auto type_name() [T = ";
  suffix = "]";
#elif defined(__GNUC__)
  name = __PRETTY_FUNCTION__;
  prefix = "constexpr auto type_name() [with T = ";
  suffix = "]";
#elif defined(_MSC_VER)
  name = __FUNCSIG__;
  prefix = "auto __cdecl type_name<";
  suffix = ">(void) noexcept";
#endif
  name.remove_prefix(prefix.size());
  name.remove_suffix(suffix.size());
  return name;
}

Demo.


The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


As I challenge I decided to test how far can one go with platform-independent (hopefully) template trickery.

The names are assembled completely at compilation time. (Which means typeid(T).name() couldn't be used, thus you have to explicitly provide names for non-compound types. Otherwise placeholders will be displayed instead.)

Example usage:

TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.

TYPE_NAME(std::string)

int main()
{
    // A simple case
    std::cout << type_name<void(*)(int)> << '\n';
    // -> `void (*)(int)`

    // Ugly mess case
    // Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
    std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
    // -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`

    // A case with undefined types
    //  If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
    std::cout << type_name<std::ostream (*)(int, short)> << '\n';
    // -> `class? (*)(int,??)`
    // With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}

Code:

#include <type_traits>
#include <utility>

static constexpr std::size_t max_str_lit_len = 256;

template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
    if constexpr(I < N)
        return str[I];
    else
        return '\0';
}

constexpr std::size_t sl_len(const char *str)
{
    for (std::size_t i = 0; i < max_str_lit_len; i++)
        if (str[i] == '\0')
            return i;
    return 0;
}

template <char ...C> struct str_lit
{
    static constexpr char value[] {C..., '\0'};
    static constexpr int size = sl_len(value);

    template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
    template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
    template <typename ...P> using concat = typename concat_impl<P...>::type;
};

template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
    using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;

#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)

template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
    return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}

template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
    static constexpr auto func()
    {
        if constexpr (N >= cexpr_pow<10,X>::value)
            return num_to_str_lit_impl<N, X+1>::func();
        else
            return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
    }
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());


using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;

using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;

template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;

template <typename T> struct primitive_type_name {using value = unk;};

template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum  = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};

template <typename T> struct type_name_impl;

template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
                                                                               typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
                                            typename primitive_type_name<T>::value,
                                            typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;

template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;

template <typename T> struct type_name_impl
{
    using l = typename primitive_type_name<T>::value::template concat<spa>;
    using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con>,
                                 con::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<vol>,
                                 vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con_vol>,
                                 con_vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, ast>,
                                 typename type_name_impl<T>::l::template concat<     ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp, amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
                                 typename type_name_impl<T>::l::template concat<     type_name_lit<C>, nsp, ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<type_name_lit<P1>,
                          com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};

#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};

As mentioned, typeid().name() may return a mangled name. In GCC (and some other compilers) you can work around it with the following code:

#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>

namespace some_namespace { namespace another_namespace {

  class my_class { };

} }

int main() {
  typedef some_namespace::another_namespace::my_class my_type;
  // mangled
  std::cout << typeid(my_type).name() << std::endl;

  // unmangled
  int status = 0;
  char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);

  switch (status) {
    case -1: {
      // could not allocate memory
      std::cout << "Could not allocate memory" << std::endl;
      return -1;
    } break;
    case -2: {
      // invalid name under the C++ ABI mangling rules
      std::cout << "Invalid name" << std::endl;
      return -1;
    } break;
    case -3: {
      // invalid argument
      std::cout << "Invalid argument to demangle()" << std::endl;
      return -1;
    } break;
 }
 std::cout << demangled << std::endl;

 free(demangled);

 return 0;

}


In C++11, we have decltype. There is no way in standard c++ to display exact type of variable declared using decltype. We can use boost typeindex i.e type_id_with_cvr (cvr stands for const, volatile, reference) to print type like below.

#include <iostream>
#include <boost/type_index.hpp>

using namespace std;
using boost::typeindex::type_id_with_cvr;

int main() {
  int i = 0;
  const int ci = 0;
  cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
  cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
  cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
  cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
  cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
  cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
  return 0;
}

#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
    system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())

int main() {
    auto a = {"one", "two", "three"};
    cout << "Type of a: " << typeid(a).name() << endl;
    cout << "Real type of a:\n";
    show_type_name(a);
    for (auto s : a) {
        if (string(s) == "one") {
            cout << "Type of s: " << typeid(s).name() << endl;
            cout << "Real type of s:\n";
            show_type_name(s);
        }
        cout << s << endl;
    }

    int i = 5;
    cout << "Type of i: " << typeid(i).name() << endl;
    cout << "Real type of i:\n";
    show_type_name(i);
    return 0;
}

Output:

Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int

Howard Hinnant used magic numbers to extract type name. ??? suggested string prefix and suffix. But prefix/suffix keep changing. With “probe_type” type_name automatically calculates prefix and suffix sizes for “probe_type” to extract type name:

#include <string_view>
using namespace std;

namespace typeName {
 template <typename T>
  constexpr string_view wrapped_type_name () {
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return  __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return  __FUNCSIG__;
#endif
  }

  class probe_type;
  constexpr string_view probe_type_name ("typeName::probe_type");
  constexpr string_view probe_type_name_elaborated ("class typeName::probe_type");
  constexpr string_view probe_type_name_used (wrapped_type_name<probe_type> ().find (probe_type_name_elaborated) != -1 ? probe_type_name_elaborated : probe_type_name);

  constexpr size_t prefix_size () {
    return wrapped_type_name<probe_type> ().find (probe_type_name_used);
  }

  constexpr size_t suffix_size () {
    return wrapped_type_name<probe_type> ().length () - prefix_size () - probe_type_name_used.length ();
  }

  template <typename T>
  string_view type_name () {
    constexpr auto type_name = wrapped_type_name<T> ();

    return type_name.substr (prefix_size (), type_name.length () - prefix_size () - suffix_size ());
  }
}

#include <iostream>

using typeName::type_name;
using typeName::probe_type;

class test;

int main () {
  cout << type_name<class test> () << endl;

  cout << type_name<const int*&> () << endl;
  cout << type_name<unsigned int> () << endl;

  const int ic = 42;
  const int* pic = &ic;
  const int*& rpic = pic;
  cout << type_name<decltype(ic)> () << endl;
  cout << type_name<decltype(pic)> () << endl;
  cout << type_name<decltype(rpic)> () << endl;

  cout << type_name<probe_type> () << endl;
}

Output

gcc 10.2:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

clang 11.0.0:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

VS 2019 version 16.7.6:

class test
const int*&
unsigned int
const int
const int*
const int*&
class typeName::probe_type

In C++11, we have decltype. There is no way in standard c++ to display exact type of variable declared using decltype. We can use boost typeindex i.e type_id_with_cvr (cvr stands for const, volatile, reference) to print type like below.

#include <iostream>
#include <boost/type_index.hpp>

using namespace std;
using boost::typeindex::type_id_with_cvr;

int main() {
  int i = 0;
  const int ci = 0;
  cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
  cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
  cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
  cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
  cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
  cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
  return 0;
}

You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


Copying from this answer: https://stackoverflow.com/a/56766138/11502722

I was able to get this somewhat working for C++ static_assert(). The wrinkle here is that static_assert() only accepts string literals; constexpr string_view will not work. You will need to accept extra text around the typename, but it works:

template<typename T>
constexpr void assertIfTestFailed()
{
#ifdef __clang__
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(__GNUC__)
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(_MSC_VER)
    static_assert(testFn<T>(), "Test failed on this used type: " __FUNCSIG__);
#else
    static_assert(testFn<T>(), "Test failed on this used type (see surrounding logged error for details).");
#endif
    }
}

MSVC Output:

error C2338: Test failed on this used type: void __cdecl assertIfTestFailed<class BadType>(void)
... continued trace of where the erroring code came from ...

Another take on @???'s answer (originally ), making less assumptions about the prefix and suffix specifics, and inspired by @Val's answer - but without polluting the global namespace; without any conditions; and hopefully easier to read.

The popular compilers provide a macro with the current function's signature. Now, functions are templatable; so the signature contains the template arguments. So, the basic approach is: Given a type, be in a function with that type as a template argument.

Unfortunately, the type name is wrapped in text describing the function, which is different between compilers. For example, with GCC, the signature of template <typename T> int foo() with type double is: int foo() [T = double].

So, how do you get rid of the wrapper text? @HowardHinnant's solution is the shortest and most "direct": Just use per-compiler magic numbers to remove a prefix and a suffix. But obviously, that's very brittle; and nobody likes magic numbers in their code. Instead, you get the macro value for a type with a known name, you can determine what prefix and suffix constitute the wrapping.

#include <string_view>

template <typename T> constexpr std::string_view type_name();

template <>
constexpr std::string_view type_name<void>()
{ return "void"; }

namespace detail {

using type_name_prober = void;

template <typename T>
constexpr std::string_view wrapped_type_name() 
{
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return __FUNCSIG__;
#else
#error "Unsupported compiler"
#endif
}

constexpr std::size_t wrapped_type_name_prefix_length() { 
    return wrapped_type_name<type_name_prober>().find(type_name<type_name_prober>()); 
}

constexpr std::size_t wrapped_type_name_suffix_length() { 
    return wrapped_type_name<type_name_prober>().length() 
        - wrapped_type_name_prefix_length() 
        - type_name<type_name_prober>().length();
}

} // namespace detail

template <typename T>
constexpr std::string_view type_name() {
    constexpr auto wrapped_name = detail::wrapped_type_name<T>();
    constexpr auto prefix_length = detail::wrapped_type_name_prefix_length();
    constexpr auto suffix_length = detail::wrapped_type_name_suffix_length();
    constexpr auto type_name_length = wrapped_name.length() - prefix_length - suffix_length;
    return wrapped_name.substr(prefix_length, type_name_length);
}

See it on GodBolt. This should be working with MSVC as well.


Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


Howard Hinnant used magic numbers to extract type name. ??? suggested string prefix and suffix. But prefix/suffix keep changing. With “probe_type” type_name automatically calculates prefix and suffix sizes for “probe_type” to extract type name:

#include <string_view>
using namespace std;

namespace typeName {
 template <typename T>
  constexpr string_view wrapped_type_name () {
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return  __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return  __FUNCSIG__;
#endif
  }

  class probe_type;
  constexpr string_view probe_type_name ("typeName::probe_type");
  constexpr string_view probe_type_name_elaborated ("class typeName::probe_type");
  constexpr string_view probe_type_name_used (wrapped_type_name<probe_type> ().find (probe_type_name_elaborated) != -1 ? probe_type_name_elaborated : probe_type_name);

  constexpr size_t prefix_size () {
    return wrapped_type_name<probe_type> ().find (probe_type_name_used);
  }

  constexpr size_t suffix_size () {
    return wrapped_type_name<probe_type> ().length () - prefix_size () - probe_type_name_used.length ();
  }

  template <typename T>
  string_view type_name () {
    constexpr auto type_name = wrapped_type_name<T> ();

    return type_name.substr (prefix_size (), type_name.length () - prefix_size () - suffix_size ());
  }
}

#include <iostream>

using typeName::type_name;
using typeName::probe_type;

class test;

int main () {
  cout << type_name<class test> () << endl;

  cout << type_name<const int*&> () << endl;
  cout << type_name<unsigned int> () << endl;

  const int ic = 42;
  const int* pic = &ic;
  const int*& rpic = pic;
  cout << type_name<decltype(ic)> () << endl;
  cout << type_name<decltype(pic)> () << endl;
  cout << type_name<decltype(rpic)> () << endl;

  cout << type_name<probe_type> () << endl;
}

Output

gcc 10.2:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

clang 11.0.0:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

VS 2019 version 16.7.6:

class test
const int*&
unsigned int
const int
const int*
const int*&
class typeName::probe_type

For anyone still visiting, I've recently had the same issue and decided to write a small library based on answers from this post. It provides constexpr type names and type indices und is is tested on Mac, Windows and Ubuntu.

The library code is here: https://github.com/TheLartians/StaticTypeInfo


Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


I like Nick's method, A complete form might be this (for all basic data types):

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }

Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

As I challenge I decided to test how far can one go with platform-independent (hopefully) template trickery.

The names are assembled completely at compilation time. (Which means typeid(T).name() couldn't be used, thus you have to explicitly provide names for non-compound types. Otherwise placeholders will be displayed instead.)

Example usage:

TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.

TYPE_NAME(std::string)

int main()
{
    // A simple case
    std::cout << type_name<void(*)(int)> << '\n';
    // -> `void (*)(int)`

    // Ugly mess case
    // Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
    std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
    // -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`

    // A case with undefined types
    //  If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
    std::cout << type_name<std::ostream (*)(int, short)> << '\n';
    // -> `class? (*)(int,??)`
    // With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}

Code:

#include <type_traits>
#include <utility>

static constexpr std::size_t max_str_lit_len = 256;

template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
    if constexpr(I < N)
        return str[I];
    else
        return '\0';
}

constexpr std::size_t sl_len(const char *str)
{
    for (std::size_t i = 0; i < max_str_lit_len; i++)
        if (str[i] == '\0')
            return i;
    return 0;
}

template <char ...C> struct str_lit
{
    static constexpr char value[] {C..., '\0'};
    static constexpr int size = sl_len(value);

    template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
    template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
    template <typename ...P> using concat = typename concat_impl<P...>::type;
};

template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
    using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;

#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)

template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
    return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}

template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
    static constexpr auto func()
    {
        if constexpr (N >= cexpr_pow<10,X>::value)
            return num_to_str_lit_impl<N, X+1>::func();
        else
            return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
    }
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());


using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;

using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;

template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;

template <typename T> struct primitive_type_name {using value = unk;};

template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum  = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};

template <typename T> struct type_name_impl;

template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
                                                                               typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
                                            typename primitive_type_name<T>::value,
                                            typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;

template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;

template <typename T> struct type_name_impl
{
    using l = typename primitive_type_name<T>::value::template concat<spa>;
    using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con>,
                                 con::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<vol>,
                                 vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con_vol>,
                                 con_vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, ast>,
                                 typename type_name_impl<T>::l::template concat<     ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp, amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
                                 typename type_name_impl<T>::l::template concat<     type_name_lit<C>, nsp, ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<type_name_lit<P1>,
                          com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};

#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};

You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


According to Howard's solution, if you don't like the magic number, I think this is a good way to represent and it looks intuitive:

#include <string_view>

template <typename T>
constexpr auto type_name() noexcept {
  std::string_view name = "Error: unsupported compiler", prefix, suffix;
#ifdef __clang__
  name = __PRETTY_FUNCTION__;
  prefix = "auto type_name() [T = ";
  suffix = "]";
#elif defined(__GNUC__)
  name = __PRETTY_FUNCTION__;
  prefix = "constexpr auto type_name() [with T = ";
  suffix = "]";
#elif defined(_MSC_VER)
  name = __FUNCSIG__;
  prefix = "auto __cdecl type_name<";
  suffix = ">(void) noexcept";
#endif
  name.remove_prefix(prefix.size());
  name.remove_suffix(suffix.size());
  return name;
}

Demo.


As I challenge I decided to test how far can one go with platform-independent (hopefully) template trickery.

The names are assembled completely at compilation time. (Which means typeid(T).name() couldn't be used, thus you have to explicitly provide names for non-compound types. Otherwise placeholders will be displayed instead.)

Example usage:

TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.

TYPE_NAME(std::string)

int main()
{
    // A simple case
    std::cout << type_name<void(*)(int)> << '\n';
    // -> `void (*)(int)`

    // Ugly mess case
    // Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
    std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
    // -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`

    // A case with undefined types
    //  If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
    std::cout << type_name<std::ostream (*)(int, short)> << '\n';
    // -> `class? (*)(int,??)`
    // With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}

Code:

#include <type_traits>
#include <utility>

static constexpr std::size_t max_str_lit_len = 256;

template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
    if constexpr(I < N)
        return str[I];
    else
        return '\0';
}

constexpr std::size_t sl_len(const char *str)
{
    for (std::size_t i = 0; i < max_str_lit_len; i++)
        if (str[i] == '\0')
            return i;
    return 0;
}

template <char ...C> struct str_lit
{
    static constexpr char value[] {C..., '\0'};
    static constexpr int size = sl_len(value);

    template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
    template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
    template <typename ...P> using concat = typename concat_impl<P...>::type;
};

template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
    using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;

#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)

template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
    return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}

template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
    static constexpr auto func()
    {
        if constexpr (N >= cexpr_pow<10,X>::value)
            return num_to_str_lit_impl<N, X+1>::func();
        else
            return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
    }
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());


using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;

using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;

template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;

template <typename T> struct primitive_type_name {using value = unk;};

template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum  = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};

template <typename T> struct type_name_impl;

template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
                                                                               typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
                                            typename primitive_type_name<T>::value,
                                            typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;

template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;

template <typename T> struct type_name_impl
{
    using l = typename primitive_type_name<T>::value::template concat<spa>;
    using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con>,
                                 con::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<vol>,
                                 vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con_vol>,
                                 con_vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, ast>,
                                 typename type_name_impl<T>::l::template concat<     ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp, amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
                                 typename type_name_impl<T>::l::template concat<     type_name_lit<C>, nsp, ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<type_name_lit<P1>,
                          com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};

#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};

Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


As explained by Scott Meyers in Effective Modern C++,

Calls to std::type_info::name are not guaranteed to return anythong sensible.

The best solution is to let the compiler generate an error message during the type deduction, for example,

template<typename T>
class TD;

int main(){
    const int theAnswer = 32;
    auto x = theAnswer;
    auto y = &theAnswer;
    TD<decltype(x)> xType;
    TD<decltype(y)> yType;
    return 0;
}

The result will be something like this, depending on the compilers,

test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;

test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;

Hence, we get to know that x's type is int, y's type is const int*


Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


For anyone still visiting, I've recently had the same issue and decided to write a small library based on answers from this post. It provides constexpr type names and type indices und is is tested on Mac, Windows and Ubuntu.

The library code is here: https://github.com/TheLartians/StaticTypeInfo


Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

Very ugly but does the trick if you only want compile time info (e.g. for debugging):

auto testVar = std::make_tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;

Returns:

Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::tuple<int, double, const char*>'

Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


A more generic solution without function overloading than my previous one:

template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";

    return Type;}

Here MyClass is user defined class. More conditions can be added here as well.

Example:

#include <iostream>



class MyClass{};


template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";
    return Type;}


int main(){;
    int a=0;
    std::string s="";
    MyClass my;
    std::cout<<TypeOf(a)<<std::endl;
    std::cout<<TypeOf(s)<<std::endl;
    std::cout<<TypeOf(my)<<std::endl;

    return 0;}

Output:

int
String
MyClass

Very ugly but does the trick if you only want compile time info (e.g. for debugging):

auto testVar = std::make_tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;

Returns:

Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::tuple<int, double, const char*>'

As mentioned, typeid().name() may return a mangled name. In GCC (and some other compilers) you can work around it with the following code:

#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>

namespace some_namespace { namespace another_namespace {

  class my_class { };

} }

int main() {
  typedef some_namespace::another_namespace::my_class my_type;
  // mangled
  std::cout << typeid(my_type).name() << std::endl;

  // unmangled
  int status = 0;
  char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);

  switch (status) {
    case -1: {
      // could not allocate memory
      std::cout << "Could not allocate memory" << std::endl;
      return -1;
    } break;
    case -2: {
      // invalid name under the C++ ABI mangling rules
      std::cout << "Invalid name" << std::endl;
      return -1;
    } break;
    case -3: {
      // invalid argument
      std::cout << "Invalid argument to demangle()" << std::endl;
      return -1;
    } break;
 }
 std::cout << demangled << std::endl;

 free(demangled);

 return 0;

}


Copying from this answer: https://stackoverflow.com/a/56766138/11502722

I was able to get this somewhat working for C++ static_assert(). The wrinkle here is that static_assert() only accepts string literals; constexpr string_view will not work. You will need to accept extra text around the typename, but it works:

template<typename T>
constexpr void assertIfTestFailed()
{
#ifdef __clang__
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(__GNUC__)
    static_assert(testFn<T>(), "Test failed on this used type: " __PRETTY_FUNCTION__);
#elif defined(_MSC_VER)
    static_assert(testFn<T>(), "Test failed on this used type: " __FUNCSIG__);
#else
    static_assert(testFn<T>(), "Test failed on this used type (see surrounding logged error for details).");
#endif
    }
}

MSVC Output:

error C2338: Test failed on this used type: void __cdecl assertIfTestFailed<class BadType>(void)
... continued trace of where the erroring code came from ...

You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


As mentioned, typeid().name() may return a mangled name. In GCC (and some other compilers) you can work around it with the following code:

#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>

namespace some_namespace { namespace another_namespace {

  class my_class { };

} }

int main() {
  typedef some_namespace::another_namespace::my_class my_type;
  // mangled
  std::cout << typeid(my_type).name() << std::endl;

  // unmangled
  int status = 0;
  char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);

  switch (status) {
    case -1: {
      // could not allocate memory
      std::cout << "Could not allocate memory" << std::endl;
      return -1;
    } break;
    case -2: {
      // invalid name under the C++ ABI mangling rules
      std::cout << "Invalid name" << std::endl;
      return -1;
    } break;
    case -3: {
      // invalid argument
      std::cout << "Invalid argument to demangle()" << std::endl;
      return -1;
    } break;
 }
 std::cout << demangled << std::endl;

 free(demangled);

 return 0;

}


You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
    system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())

int main() {
    auto a = {"one", "two", "three"};
    cout << "Type of a: " << typeid(a).name() << endl;
    cout << "Real type of a:\n";
    show_type_name(a);
    for (auto s : a) {
        if (string(s) == "one") {
            cout << "Type of s: " << typeid(s).name() << endl;
            cout << "Real type of s:\n";
            show_type_name(s);
        }
        cout << s << endl;
    }

    int i = 5;
    cout << "Type of i: " << typeid(i).name() << endl;
    cout << "Real type of i:\n";
    show_type_name(i);
    return 0;
}

Output:

Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int

For anyone still visiting, I've recently had the same issue and decided to write a small library based on answers from this post. It provides constexpr type names and type indices und is is tested on Mac, Windows and Ubuntu.

The library code is here: https://github.com/TheLartians/StaticTypeInfo


Howard Hinnant used magic numbers to extract type name. ??? suggested string prefix and suffix. But prefix/suffix keep changing. With “probe_type” type_name automatically calculates prefix and suffix sizes for “probe_type” to extract type name:

#include <string_view>
using namespace std;

namespace typeName {
 template <typename T>
  constexpr string_view wrapped_type_name () {
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return  __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return  __FUNCSIG__;
#endif
  }

  class probe_type;
  constexpr string_view probe_type_name ("typeName::probe_type");
  constexpr string_view probe_type_name_elaborated ("class typeName::probe_type");
  constexpr string_view probe_type_name_used (wrapped_type_name<probe_type> ().find (probe_type_name_elaborated) != -1 ? probe_type_name_elaborated : probe_type_name);

  constexpr size_t prefix_size () {
    return wrapped_type_name<probe_type> ().find (probe_type_name_used);
  }

  constexpr size_t suffix_size () {
    return wrapped_type_name<probe_type> ().length () - prefix_size () - probe_type_name_used.length ();
  }

  template <typename T>
  string_view type_name () {
    constexpr auto type_name = wrapped_type_name<T> ();

    return type_name.substr (prefix_size (), type_name.length () - prefix_size () - suffix_size ());
  }
}

#include <iostream>

using typeName::type_name;
using typeName::probe_type;

class test;

int main () {
  cout << type_name<class test> () << endl;

  cout << type_name<const int*&> () << endl;
  cout << type_name<unsigned int> () << endl;

  const int ic = 42;
  const int* pic = &ic;
  const int*& rpic = pic;
  cout << type_name<decltype(ic)> () << endl;
  cout << type_name<decltype(pic)> () << endl;
  cout << type_name<decltype(rpic)> () << endl;

  cout << type_name<probe_type> () << endl;
}

Output

gcc 10.2:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

clang 11.0.0:

test
const int *&
unsigned int
const int
const int *
const int *&
typeName::probe_type

VS 2019 version 16.7.6:

class test
const int*&
unsigned int
const int
const int*
const int*&
class typeName::probe_type

You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


I like Nick's method, A complete form might be this (for all basic data types):

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }

You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


Very ugly but does the trick if you only want compile time info (e.g. for debugging):

auto testVar = std::make_tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;

Returns:

Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::tuple<int, double, const char*>'

You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


Another take on @???'s answer (originally ), making less assumptions about the prefix and suffix specifics, and inspired by @Val's answer - but without polluting the global namespace; without any conditions; and hopefully easier to read.

The popular compilers provide a macro with the current function's signature. Now, functions are templatable; so the signature contains the template arguments. So, the basic approach is: Given a type, be in a function with that type as a template argument.

Unfortunately, the type name is wrapped in text describing the function, which is different between compilers. For example, with GCC, the signature of template <typename T> int foo() with type double is: int foo() [T = double].

So, how do you get rid of the wrapper text? @HowardHinnant's solution is the shortest and most "direct": Just use per-compiler magic numbers to remove a prefix and a suffix. But obviously, that's very brittle; and nobody likes magic numbers in their code. Instead, you get the macro value for a type with a known name, you can determine what prefix and suffix constitute the wrapping.

#include <string_view>

template <typename T> constexpr std::string_view type_name();

template <>
constexpr std::string_view type_name<void>()
{ return "void"; }

namespace detail {

using type_name_prober = void;

template <typename T>
constexpr std::string_view wrapped_type_name() 
{
#ifdef __clang__
    return __PRETTY_FUNCTION__;
#elif defined(__GNUC__)
    return __PRETTY_FUNCTION__;
#elif defined(_MSC_VER)
    return __FUNCSIG__;
#else
#error "Unsupported compiler"
#endif
}

constexpr std::size_t wrapped_type_name_prefix_length() { 
    return wrapped_type_name<type_name_prober>().find(type_name<type_name_prober>()); 
}

constexpr std::size_t wrapped_type_name_suffix_length() { 
    return wrapped_type_name<type_name_prober>().length() 
        - wrapped_type_name_prefix_length() 
        - type_name<type_name_prober>().length();
}

} // namespace detail

template <typename T>
constexpr std::string_view type_name() {
    constexpr auto wrapped_name = detail::wrapped_type_name<T>();
    constexpr auto prefix_length = detail::wrapped_type_name_prefix_length();
    constexpr auto suffix_length = detail::wrapped_type_name_suffix_length();
    constexpr auto type_name_length = wrapped_name.length() - prefix_length - suffix_length;
    return wrapped_name.substr(prefix_length, type_name_length);
}

See it on GodBolt. This should be working with MSVC as well.


Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

I like Nick's method, A complete form might be this (for all basic data types):

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }

You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


As explained by Scott Meyers in Effective Modern C++,

Calls to std::type_info::name are not guaranteed to return anythong sensible.

The best solution is to let the compiler generate an error message during the type deduction, for example,

template<typename T>
class TD;

int main(){
    const int theAnswer = 32;
    auto x = theAnswer;
    auto y = &theAnswer;
    TD<decltype(x)> xType;
    TD<decltype(y)> yType;
    return 0;
}

The result will be something like this, depending on the compilers,

test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;

test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;

Hence, we get to know that x's type is int, y's type is const int*


You can use templates.

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }

In the example above, when the type is not matched it will print "unknown".


You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


You may also use c++filt with option -t (type) to demangle the type name:

#include <iostream>
#include <typeinfo>
#include <string>

using namespace std;

int main() {
  auto x = 1;
  string my_type = typeid(x).name();
  system(("echo " + my_type + " | c++filt -t").c_str());
  return 0;
}

Tested on linux only.


A more generic solution without function overloading than my previous one:

template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";

    return Type;}

Here MyClass is user defined class. More conditions can be added here as well.

Example:

#include <iostream>



class MyClass{};


template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";
    return Type;}


int main(){;
    int a=0;
    std::string s="";
    MyClass my;
    std::cout<<TypeOf(a)<<std::endl;
    std::cout<<TypeOf(s)<<std::endl;
    std::cout<<TypeOf(my)<<std::endl;

    return 0;}

Output:

int
String
MyClass

For anyone still visiting, I've recently had the same issue and decided to write a small library based on answers from this post. It provides constexpr type names and type indices und is is tested on Mac, Windows and Ubuntu.

The library code is here: https://github.com/TheLartians/StaticTypeInfo


I like Nick's method, A complete form might be this (for all basic data types):

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }

#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
    system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())

int main() {
    auto a = {"one", "two", "three"};
    cout << "Type of a: " << typeid(a).name() << endl;
    cout << "Real type of a:\n";
    show_type_name(a);
    for (auto s : a) {
        if (string(s) == "one") {
            cout << "Type of s: " << typeid(s).name() << endl;
            cout << "Real type of s:\n";
            show_type_name(s);
        }
        cout << s << endl;
    }

    int i = 5;
    cout << "Type of i: " << typeid(i).name() << endl;
    cout << "Real type of i:\n";
    show_type_name(i);
    return 0;
}

Output:

Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int

Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


A more generic solution without function overloading than my previous one:

template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";

    return Type;}

Here MyClass is user defined class. More conditions can be added here as well.

Example:

#include <iostream>



class MyClass{};


template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";
    return Type;}


int main(){;
    int a=0;
    std::string s="";
    MyClass my;
    std::cout<<TypeOf(a)<<std::endl;
    std::cout<<TypeOf(s)<<std::endl;
    std::cout<<TypeOf(my)<<std::endl;

    return 0;}

Output:

int
String
MyClass

Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

You may also use c++filt with option -t (type) to demangle the type name:

#include <iostream>
#include <typeinfo>
#include <string>

using namespace std;

int main() {
  auto x = 1;
  string my_type = typeid(x).name();
  system(("echo " + my_type + " | c++filt -t").c_str());
  return 0;
}

Tested on linux only.


According to Howard's solution, if you don't like the magic number, I think this is a good way to represent and it looks intuitive:

#include <string_view>

template <typename T>
constexpr auto type_name() noexcept {
  std::string_view name = "Error: unsupported compiler", prefix, suffix;
#ifdef __clang__
  name = __PRETTY_FUNCTION__;
  prefix = "auto type_name() [T = ";
  suffix = "]";
#elif defined(__GNUC__)
  name = __PRETTY_FUNCTION__;
  prefix = "constexpr auto type_name() [with T = ";
  suffix = "]";
#elif defined(_MSC_VER)
  name = __FUNCSIG__;
  prefix = "auto __cdecl type_name<";
  suffix = ">(void) noexcept";
#endif
  name.remove_prefix(prefix.size());
  name.remove_suffix(suffix.size());
  return name;
}

Demo.


You may also use c++filt with option -t (type) to demangle the type name:

#include <iostream>
#include <typeinfo>
#include <string>

using namespace std;

int main() {
  auto x = 1;
  string my_type = typeid(x).name();
  system(("echo " + my_type + " | c++filt -t").c_str());
  return 0;
}

Tested on linux only.


As explained by Scott Meyers in Effective Modern C++,

Calls to std::type_info::name are not guaranteed to return anythong sensible.

The best solution is to let the compiler generate an error message during the type deduction, for example,

template<typename T>
class TD;

int main(){
    const int theAnswer = 32;
    auto x = theAnswer;
    auto y = &theAnswer;
    TD<decltype(x)> xType;
    TD<decltype(y)> yType;
    return 0;
}

The result will be something like this, depending on the compilers,

test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;

test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;

Hence, we get to know that x's type is int, y's type is const int*


You could use a traits class for this. Something like:

#include <iostream>
using namespace std;

template <typename T> class type_name {
public:
    static const char *name;
};

#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)

DECLARE_TYPE_NAME(int);

int main()
{
    int a = 12;
    cout << GET_TYPE_NAME(a) << endl;
}

The DECLARE_TYPE_NAME define exists to make your life easier in declaring this traits class for all the types you expect to need.

This might be more useful than the solutions involving typeid because you get to control the output. For example, using typeid for long long on my compiler gives "x".


Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
    system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())

int main() {
    auto a = {"one", "two", "three"};
    cout << "Type of a: " << typeid(a).name() << endl;
    cout << "Real type of a:\n";
    show_type_name(a);
    for (auto s : a) {
        if (string(s) == "one") {
            cout << "Type of s: " << typeid(s).name() << endl;
            cout << "Real type of s:\n";
            show_type_name(s);
        }
        cout << s << endl;
    }

    int i = 5;
    cout << "Type of i: " << typeid(i).name() << endl;
    cout << "Real type of i:\n";
    show_type_name(i);
    return 0;
}

Output:

Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int

Don't forget to include <typeinfo>

I believe what you are referring to is runtime type identification. You can achieve the above by doing .

#include <iostream>
#include <typeinfo>

using namespace std;

int main() {
  int i;
  cout << typeid(i).name();
  return 0;
}

Note that the names generated by the RTTI feature of C++ is not portable. For example, the class

MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>

will have the following names:

// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE

So you can't use this information for serialization. But still, the typeid(a).name() property can still be used for log/debug purposes


As explained by Scott Meyers in Effective Modern C++,

Calls to std::type_info::name are not guaranteed to return anythong sensible.

The best solution is to let the compiler generate an error message during the type deduction, for example,

template<typename T>
class TD;

int main(){
    const int theAnswer = 32;
    auto x = theAnswer;
    auto y = &theAnswer;
    TD<decltype(x)> xType;
    TD<decltype(y)> yType;
    return 0;
}

The result will be something like this, depending on the compilers,

test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;

test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;

Hence, we get to know that x's type is int, y's type is const int*


In C++11, we have decltype. There is no way in standard c++ to display exact type of variable declared using decltype. We can use boost typeindex i.e type_id_with_cvr (cvr stands for const, volatile, reference) to print type like below.

#include <iostream>
#include <boost/type_index.hpp>

using namespace std;
using boost::typeindex::type_id_with_cvr;

int main() {
  int i = 0;
  const int ci = 0;
  cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
  cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
  cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
  cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
  cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
  cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
  return 0;
}

The other answers involving RTTI (typeid) are probably what you want, as long as:

  • you can afford the memory overhead (which can be considerable with some compilers)
  • the class names your compiler returns are useful

The alternative, (similar to Greg Hewgill's answer), is to build a compile-time table of traits.

template <typename T> struct type_as_string;

// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
    static const char* const value = "Wibble";
};

Be aware that if you wrap the declarations in a macro, you'll have trouble declaring names for template types taking more than one parameter (e.g. std::map), due to the comma.

To access the name of the type of a variable, all you need is

template <typename T>
const char* get_type_as_string(const T&)
{
    return type_as_string<T>::value;
}

Try:

#include <typeinfo>

// …
std::cout << typeid(a).name() << '\n';

You might have to activate RTTI in your compiler options for this to work. Additionally, the output of this depends on the compiler. It might be a raw type name or a name mangling symbol or anything in between.


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to variables

When to create variables (memory management) How to print a Groovy variable in Jenkins? What does ${} (dollar sign and curly braces) mean in a string in Javascript? How to access global variables How to initialize a variable of date type in java? How to define a variable in a Dockerfile? Why does foo = filter(...) return a <filter object>, not a list? How can I pass variable to ansible playbook in the command line? How do I use this JavaScript variable in HTML? Static vs class functions/variables in Swift classes?

Examples related to c++11

Remove from the beginning of std::vector Converting std::__cxx11::string to std::string What exactly is std::atomic? C++ How do I convert a std::chrono::time_point to long and back Passing capturing lambda as function pointer undefined reference to 'std::cout' Is it possible to use std::string in a constexpr? How does #include <bits/stdc++.h> work in C++? error::make_unique is not a member of ‘std’ no match for ‘operator<<’ in ‘std::operator

Examples related to typeof

Get class name of object as string in Swift Why does typeof array with objects return "object" and not "array"? Get type of all variables How to cast Object to its actual type? typeof operator in C When and where to use GetType() or typeof()? How do I get the type of a variable? How to efficiently check if variable is Array or Object (in NodeJS & V8)? Better way to get type of a Javascript variable? C# switch on type