Another "finally" block emulation using C++11 lambda functions
template <typename TCode, typename TFinallyCode>
inline void with_finally(const TCode &code, const TFinallyCode &finally_code)
{
try
{
code();
}
catch (...)
{
try
{
finally_code();
}
catch (...) // Maybe stupid check that finally_code mustn't throw.
{
std::terminate();
}
throw;
}
finally_code();
}
Let's hope the compiler will optimize the code above.
Now we can write code like this:
with_finally(
[&]()
{
try
{
// Doing some stuff that may throw an exception
}
catch (const exception1 &)
{
// Handling first class of exceptions
}
catch (const exception2 &)
{
// Handling another class of exceptions
}
// Some classes of exceptions can be still unhandled
},
[&]() // finally
{
// This code will be executed in all three cases:
// 1) exception was not thrown at all
// 2) exception was handled by one of the "catch" blocks above
// 3) exception was not handled by any of the "catch" block above
}
);
If you wish you can wrap this idiom into "try - finally" macros:
// Please never throw exception below. It is needed to avoid a compilation error
// in the case when we use "begin_try ... finally" without any "catch" block.
class never_thrown_exception {};
#define begin_try with_finally([&](){ try
#define finally catch(never_thrown_exception){throw;} },[&]()
#define end_try ) // sorry for "pascalish" style :(
Now "finally" block is available in C++11:
begin_try
{
// A code that may throw
}
catch (const some_exception &)
{
// Handling some exceptions
}
finally
{
// A code that is always executed
}
end_try; // Sorry again for this ugly thing
Personally I don't like the "macro" version of "finally" idiom and would prefer to use pure "with_finally" function even though a syntax is more bulky in that case.
You can test the code above here: http://coliru.stacked-crooked.com/a/1d88f64cb27b3813
PS
If you need a finally block in your code, then scoped guards or ON_FINALLY/ON_EXCEPTION macros will probably better fit your needs.
Here is short example of usage ON_FINALLY/ON_EXCEPTION:
void function(std::vector<const char*> &vector)
{
int *arr1 = (int*)malloc(800*sizeof(int));
if (!arr1) { throw "cannot malloc arr1"; }
ON_FINALLY({ free(arr1); });
int *arr2 = (int*)malloc(900*sizeof(int));
if (!arr2) { throw "cannot malloc arr2"; }
ON_FINALLY({ free(arr2); });
vector.push_back("good");
ON_EXCEPTION({ vector.pop_back(); });
...