I see std::weak_ptr<T>
as a handle to a std::shared_ptr<T>
: It allows me
to get the std::shared_ptr<T>
if it still exists, but it will not extend its
lifetime. There are several scenarios when such point of view is useful:
// Some sort of image; very expensive to create.
std::shared_ptr< Texture > texture;
// A Widget should be able to quickly get a handle to a Texture. On the
// other hand, I don't want to keep Textures around just because a widget
// may need it.
struct Widget {
std::weak_ptr< Texture > texture_handle;
void render() {
if (auto texture = texture_handle.get(); texture) {
// do stuff with texture. Warning: `texture`
// is now extending the lifetime because it
// is a std::shared_ptr< Texture >.
} else {
// gracefully degrade; there's no texture.
}
}
};
Another important scenario is to break cycles in data structures.
// Asking for trouble because a node owns the next node, and the next node owns
// the previous node: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > next;
std::shared_ptr< Node > prev;
};
// Asking for trouble because a parent owns its children and children own their
// parents: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::shared_ptr< Node > next;
std::weak_ptr< Node > prev;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::weak_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
Herb Sutter has an excellent talk that explains the best use of language features (in this case smart pointers) to ensure Leak Freedom by Default (meaning: everything clicks in place by construction; you can hardly screw it up). It is a must watch.