df.filter(regex='[A-CEG-I]') # does NOT depend on the column order
Note that any regular expression is allowed here, so this approach can be very general. E.g. if you wanted all columns starting with a capital or lowercase "A" you could use: df.filter(regex='^[Aa]')
df[ list(df.loc[:,'A':'C']) + ['E'] + list(df.loc[:,'G':'I']) ]
Note that unlike the label-based method, this only works if your columns are alphabetically sorted. This is not necessarily a problem, however. For example, if your columns go ['A','C','B']
, then you could replace 'A':'C'
above with 'A':'B'
.
And for completeness, you always have the option shown by @Magdalena of simply listing each column individually, although it could be much more verbose as the number of columns increases:
df[['A','B','C','E','G','H','I']] # does NOT depend on the column order
A B C E G H I
0 -0.814688 -1.060864 -0.008088 2.697203 -0.763874 1.793213 -0.019520
1 0.549824 0.269340 0.405570 -0.406695 -0.536304 -1.231051 0.058018
2 0.879230 -0.666814 1.305835 0.167621 -1.100355 0.391133 0.317467