[mysql] What data type to use for hashed password field and what length?

I'm not sure how password hashing works (will be implementing it later), but need to create database schema now.

I'm thinking of limiting passwords to 4-20 characters, but as I understand after encrypting hash string will be of different length.

So, how to store these passwords in the database?

This question is related to mysql hash types passwords cryptography

The answer is


You can actually use CHAR(length of hash) to define your datatype for MySQL because each hashing algorithm will always evaluate out to the same number of characters. For example, SHA1 always returns a 40-character hexadecimal number.


Always use a password hashing algorithm: Argon2, scrypt, bcrypt or PBKDF2.

Argon2 won the 2015 password hashing competition. Scrypt, bcrypt and PBKDF2 are older algorithms that are considered less preferred now, but still fundamentally sound, so if your platform doesn't support Argon2 yet, it's ok to use another algorithm for now.

Never store a password directly in a database. Don't encrypt it, either: otherwise, if your site gets breached, the attacker gets the decryption key and so can obtain all passwords. Passwords MUST be hashed.

A password hash has different properties from a hash table hash or a cryptographic hash. Never use an ordinary cryptographic hash such as MD5, SHA-256 or SHA-512 on a password. A password hashing algorithm uses a salt, which is unique (not used for any other user or in anybody else's database). The salt is necessary so that attackers can't just pre-calculate the hashes of common passwords: with a salt, they have to restart the calculation for every account. A password hashing algorithm is intrinsically slow — as slow as you can afford. Slowness hurts the attacker a lot more than you because the attacker has to try many different passwords. For more information, see How to securely hash passwords.

A password hash encodes four pieces of information:

  • An indicator of which algorithm is used. This is necessary for agility: cryptographic recommendations change over time. You need to be able to transition to a new algorithm.
  • A difficulty or hardness indicator. The higher this value, the more computation is needed to calculate the hash. This should be a constant or a global configuration value in the password change function, but it should increase over time as computers get faster, so you need to remember the value for each account. Some algorithms have a single numerical value, others have more parameters there (for example to tune CPU usage and RAM usage separately).
  • The salt. Since the salt must be globally unique, it has to be stored for each account. The salt should be generated randomly on each password change.
  • The hash proper, i.e. the output of the mathematical calculation in the hashing algorithm.

Many libraries include a pair functions that conveniently packages this information as a single string: one that takes the algorithm indicator, the hardness indicator and the password, generates a random salt and returns the full hash string; and one that takes a password and the full hash string as input and returns a boolean indicating whether the password was correct. There's no universal standard, but a common encoding is

$algorithm$parameters$salt$output

where algorithm is a number or a short alphanumeric string encoding the choice of algorithm, parameters is a printable string, and salt and output are encoded in Base64 without terminating =.

16 bytes are enough for the salt and the output. (See e.g. recommendations for Argon2.) Encoded in Base64, that's 21 characters each. The other two parts depend on the algorithm and parameters, but 20–40 characters are typical. That's a total of about 82 ASCII characters (CHAR(82), and no need for Unicode), to which you should add a safety margin if you think it's going to be difficult to enlarge the field later.

If you encode the hash in a binary format, you can get it down to 1 byte for the algorithm, 1–4 bytes for the hardness (if you hard-code some of the parameters), and 16 bytes each for the salt and output, for a total of 37 bytes. Say 40 bytes (BINARY(40)) to have at least a couple of spare bytes. Note that these are 8-bit bytes, not printable characters, in particular the field can include null bytes.

Note that the length of the hash is completely unrelated to the length of the password.


It really depends on the hashing algorithm you're using. The length of the password has little to do with the length of the hash, if I remember correctly. Look up the specs on the hashing algorithm you are using, run a few tests, and truncate just above that.


As a fixed length string (VARCHAR(n) or however MySQL calls it). A hash has always a fixed length of for example 12 characters (depending on the hash algorithm you use). So a 20 char password would be reduced to a 12 char hash, and a 4 char password would also yield a 12 char hash.


You can actually use CHAR(length of hash) to define your datatype for MySQL because each hashing algorithm will always evaluate out to the same number of characters. For example, SHA1 always returns a 40-character hexadecimal number.


You should use TEXT (storing unlimited number of characters) for the sake of forward compatibility. Hashing algorithms (need to) become stronger over time and thus this database field will need to support more characters over time. Additionally depending on your migration strategy you may need to store new and old hashes in the same field, so fixing the length to one type of hash is not recommended.


You can actually use CHAR(length of hash) to define your datatype for MySQL because each hashing algorithm will always evaluate out to the same number of characters. For example, SHA1 always returns a 40-character hexadecimal number.


It really depends on the hashing algorithm you're using. The length of the password has little to do with the length of the hash, if I remember correctly. Look up the specs on the hashing algorithm you are using, run a few tests, and truncate just above that.


Hashes are a sequence of bits (128 bits, 160 bits, 256 bits, etc., depending on the algorithm). Your column should be binary-typed, not text/character-typed, if MySQL allows it (SQL Server datatype is binary(n) or varbinary(n)). You should also salt the hashes. Salts may be text or binary, and you will need a corresponding column.


I've always tested to find the MAX string length of an encrypted string and set that as the character length of a VARCHAR type. Depending on how many records you're going to have, it could really help the database size.


for md5 vARCHAR(32) is appropriate. For those using AES better to use varbinary.


It really depends on the hashing algorithm you're using. The length of the password has little to do with the length of the hash, if I remember correctly. Look up the specs on the hashing algorithm you are using, run a few tests, and truncate just above that.


for md5 vARCHAR(32) is appropriate. For those using AES better to use varbinary.


I've always tested to find the MAX string length of an encrypted string and set that as the character length of a VARCHAR type. Depending on how many records you're going to have, it could really help the database size.


Hashes are a sequence of bits (128 bits, 160 bits, 256 bits, etc., depending on the algorithm). Your column should be binary-typed, not text/character-typed, if MySQL allows it (SQL Server datatype is binary(n) or varbinary(n)). You should also salt the hashes. Salts may be text or binary, and you will need a corresponding column.


You might find this Wikipedia article on salting worthwhile. The idea is to add a set bit of data to randomize your hash value; this will protect your passwords from dictionary attacks if someone gets unauthorized access to the password hashes.


As a fixed length string (VARCHAR(n) or however MySQL calls it). A hash has always a fixed length of for example 12 characters (depending on the hash algorithm you use). So a 20 char password would be reduced to a 12 char hash, and a 4 char password would also yield a 12 char hash.


You might find this Wikipedia article on salting worthwhile. The idea is to add a set bit of data to randomize your hash value; this will protect your passwords from dictionary attacks if someone gets unauthorized access to the password hashes.


Hashes are a sequence of bits (128 bits, 160 bits, 256 bits, etc., depending on the algorithm). Your column should be binary-typed, not text/character-typed, if MySQL allows it (SQL Server datatype is binary(n) or varbinary(n)). You should also salt the hashes. Salts may be text or binary, and you will need a corresponding column.


I've always tested to find the MAX string length of an encrypted string and set that as the character length of a VARCHAR type. Depending on how many records you're going to have, it could really help the database size.


As a fixed length string (VARCHAR(n) or however MySQL calls it). A hash has always a fixed length of for example 12 characters (depending on the hash algorithm you use). So a 20 char password would be reduced to a 12 char hash, and a 4 char password would also yield a 12 char hash.


You might find this Wikipedia article on salting worthwhile. The idea is to add a set bit of data to randomize your hash value; this will protect your passwords from dictionary attacks if someone gets unauthorized access to the password hashes.


You should use TEXT (storing unlimited number of characters) for the sake of forward compatibility. Hashing algorithms (need to) become stronger over time and thus this database field will need to support more characters over time. Additionally depending on your migration strategy you may need to store new and old hashes in the same field, so fixing the length to one type of hash is not recommended.


You might find this Wikipedia article on salting worthwhile. The idea is to add a set bit of data to randomize your hash value; this will protect your passwords from dictionary attacks if someone gets unauthorized access to the password hashes.


It really depends on the hashing algorithm you're using. The length of the password has little to do with the length of the hash, if I remember correctly. Look up the specs on the hashing algorithm you are using, run a few tests, and truncate just above that.


Always use a password hashing algorithm: Argon2, scrypt, bcrypt or PBKDF2.

Argon2 won the 2015 password hashing competition. Scrypt, bcrypt and PBKDF2 are older algorithms that are considered less preferred now, but still fundamentally sound, so if your platform doesn't support Argon2 yet, it's ok to use another algorithm for now.

Never store a password directly in a database. Don't encrypt it, either: otherwise, if your site gets breached, the attacker gets the decryption key and so can obtain all passwords. Passwords MUST be hashed.

A password hash has different properties from a hash table hash or a cryptographic hash. Never use an ordinary cryptographic hash such as MD5, SHA-256 or SHA-512 on a password. A password hashing algorithm uses a salt, which is unique (not used for any other user or in anybody else's database). The salt is necessary so that attackers can't just pre-calculate the hashes of common passwords: with a salt, they have to restart the calculation for every account. A password hashing algorithm is intrinsically slow — as slow as you can afford. Slowness hurts the attacker a lot more than you because the attacker has to try many different passwords. For more information, see How to securely hash passwords.

A password hash encodes four pieces of information:

  • An indicator of which algorithm is used. This is necessary for agility: cryptographic recommendations change over time. You need to be able to transition to a new algorithm.
  • A difficulty or hardness indicator. The higher this value, the more computation is needed to calculate the hash. This should be a constant or a global configuration value in the password change function, but it should increase over time as computers get faster, so you need to remember the value for each account. Some algorithms have a single numerical value, others have more parameters there (for example to tune CPU usage and RAM usage separately).
  • The salt. Since the salt must be globally unique, it has to be stored for each account. The salt should be generated randomly on each password change.
  • The hash proper, i.e. the output of the mathematical calculation in the hashing algorithm.

Many libraries include a pair functions that conveniently packages this information as a single string: one that takes the algorithm indicator, the hardness indicator and the password, generates a random salt and returns the full hash string; and one that takes a password and the full hash string as input and returns a boolean indicating whether the password was correct. There's no universal standard, but a common encoding is

$algorithm$parameters$salt$output

where algorithm is a number or a short alphanumeric string encoding the choice of algorithm, parameters is a printable string, and salt and output are encoded in Base64 without terminating =.

16 bytes are enough for the salt and the output. (See e.g. recommendations for Argon2.) Encoded in Base64, that's 21 characters each. The other two parts depend on the algorithm and parameters, but 20–40 characters are typical. That's a total of about 82 ASCII characters (CHAR(82), and no need for Unicode), to which you should add a safety margin if you think it's going to be difficult to enlarge the field later.

If you encode the hash in a binary format, you can get it down to 1 byte for the algorithm, 1–4 bytes for the hardness (if you hard-code some of the parameters), and 16 bytes each for the salt and output, for a total of 37 bytes. Say 40 bytes (BINARY(40)) to have at least a couple of spare bytes. Note that these are 8-bit bytes, not printable characters, in particular the field can include null bytes.

Note that the length of the hash is completely unrelated to the length of the password.


Hashes are a sequence of bits (128 bits, 160 bits, 256 bits, etc., depending on the algorithm). Your column should be binary-typed, not text/character-typed, if MySQL allows it (SQL Server datatype is binary(n) or varbinary(n)). You should also salt the hashes. Salts may be text or binary, and you will need a corresponding column.


I've always tested to find the MAX string length of an encrypted string and set that as the character length of a VARCHAR type. Depending on how many records you're going to have, it could really help the database size.


Examples related to mysql

Implement specialization in ER diagram How to post query parameters with Axios? PHP with MySQL 8.0+ error: The server requested authentication method unknown to the client Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver' phpMyAdmin - Error > Incorrect format parameter? Authentication plugin 'caching_sha2_password' is not supported How to resolve Unable to load authentication plugin 'caching_sha2_password' issue Connection Java-MySql : Public Key Retrieval is not allowed How to grant all privileges to root user in MySQL 8.0 MySQL 8.0 - Client does not support authentication protocol requested by server; consider upgrading MySQL client

Examples related to hash

php mysqli_connect: authentication method unknown to the client [caching_sha2_password] What is Hash and Range Primary Key? How to create a laravel hashed password Hashing a file in Python PHP salt and hash SHA256 for login password Append key/value pair to hash with << in Ruby Are there any SHA-256 javascript implementations that are generally considered trustworthy? How do I generate a SALT in Java for Salted-Hash? What does hash do in python? Hashing with SHA1 Algorithm in C#

Examples related to types

Cannot invoke an expression whose type lacks a call signature How to declare a Fixed length Array in TypeScript Typescript input onchange event.target.value Error: Cannot invoke an expression whose type lacks a call signature Class constructor type in typescript? What is dtype('O'), in pandas? YAML equivalent of array of objects in JSON Converting std::__cxx11::string to std::string Append a tuple to a list - what's the difference between two ways? How to check if type is Boolean

Examples related to passwords

Your password does not satisfy the current policy requirements Laravel Password & Password_Confirmation Validation Default password of mysql in ubuntu server 16.04 mcrypt is deprecated, what is the alternative? What is the default root pasword for MySQL 5.7 MySQL user DB does not have password columns - Installing MySQL on OSX Changing an AIX password via script? Hide password with "•••••••" in a textField How to create a laravel hashed password Enter export password to generate a P12 certificate

Examples related to cryptography

Failed to install Python Cryptography package with PIP and setup.py C# RSA encryption/decryption with transmission How do you Encrypt and Decrypt a PHP String? Example of AES using Crypto++ How to encrypt/decrypt data in php? How to decrypt a SHA-256 encrypted string? Simplest two-way encryption using PHP Padding is invalid and cannot be removed? Given final block not properly padded Getting RSA private key from PEM BASE64 Encoded private key file