[c++] What's the difference between size_t and int in C++?

In several C++ examples I see a use of the type size_t where I would have used a simple int. What's the difference, and why size_t should be better?

This question is related to c++ c types int

The answer is


size_t is the type used to represent sizes (as its names implies). Its platform (and even potentially implementation) dependent, and should be used only for this purpose. Obviously, representing a size, size_t is unsigned. Many stdlib functions, including malloc, sizeof and various string operation functions use size_t as a datatype.

An int is signed by default, and even though its size is also platform dependant, it will be a fixed 32bits on most modern machine (and though size_t is 64 bits on 64-bits architecture, int remain 32bits long on those architectures).

To summarize : use size_t to represent the size of an object and int (or long) in other cases.


It's because size_t can be anything other than an int (maybe a struct). The idea is that it decouples it's job from the underlying type.


size_t is the type used to represent sizes (as its names implies). Its platform (and even potentially implementation) dependent, and should be used only for this purpose. Obviously, representing a size, size_t is unsigned. Many stdlib functions, including malloc, sizeof and various string operation functions use size_t as a datatype.

An int is signed by default, and even though its size is also platform dependant, it will be a fixed 32bits on most modern machine (and though size_t is 64 bits on 64-bits architecture, int remain 32bits long on those architectures).

To summarize : use size_t to represent the size of an object and int (or long) in other cases.


The size_t type is defined as the unsigned integral type of the sizeof operator. In the real world, you will often see int defined as 32 bits (for backward compatibility) but size_t defined as 64 bits (so you can declare arrays and structures more than 4 GiB in size) on 64-bit platforms. If a long int is also 64-bits, this is called the LP64 convention; if long int is 32 bits but long long int and pointers are 64 bits, that’s LLP64. You also might get the reverse, a program that uses 64-bit instructions for speed, but 32-bit pointers to save memory. Also, int is signed and size_t is unsigned.

There were historically a number of other platforms where addresses were wider or shorter than the native size of int. In fact, in the ’70s and early ’80s, this was more common than not: all the popular 8-bit microcomputers had 8-bit registers and 16-bit addresses, and the transition between 16 and 32 bits also produced many machines that had addresses wider than their registers. I occasionally still see questions here about Borland Turbo C for MS-DOS, whose Huge memory mode had 20-bit addresses stored in 32 bits on a 16-bit CPU (but which could support the 32-bit instruction set of the 80386); the Motorola 68000 had a 16-bit ALU with 32-bit registers and addresses; there were IBM mainframes with 15-bit, 24-bit or 31-bit addresses. You also still see different ALU and address-bus sizes in embedded systems.

Any time int is smaller than size_t, and you try to store the size or offset of a very large file or object in an unsigned int, there is the possibility that it could overflow and cause a bug. With an int, there is also the possibility of getting a negative number. If an int or unsigned int is wider, the program will run correctly but waste memory.

You should generally use the correct type for the purpose if you want portability. A lot of people will recommend that you use signed math instead of unsigned (to avoid nasty, subtle bugs like 1U < -3). For that purpose, the standard library defines ptrdiff_t in <stddef.h> as the signed type of the result of subtracting a pointer from another.

That said, a workaround might be to bounds-check all addresses and offsets against INT_MAX and either 0 or INT_MIN as appropriate, and turn on the compiler warnings about comparing signed and unsigned quantities in case you miss any. You should always, always, always be checking your array accesses for overflow in C anyway.


It's because size_t can be anything other than an int (maybe a struct). The idea is that it decouples it's job from the underlying type.


The definition of SIZE_T is found at: https://msdn.microsoft.com/en-us/library/cc441980.aspx and https://msdn.microsoft.com/en-us/library/cc230394.aspx

Pasting here the required information:

SIZE_T is a ULONG_PTR representing the maximum number of bytes to which a pointer can point.

This type is declared as follows:

typedef ULONG_PTR SIZE_T;

A ULONG_PTR is an unsigned long type used for pointer precision. It is used when casting a pointer to a long type to perform pointer arithmetic.

This type is declared as follows:

typedef unsigned __int3264 ULONG_PTR;

size_t is the type used to represent sizes (as its names implies). Its platform (and even potentially implementation) dependent, and should be used only for this purpose. Obviously, representing a size, size_t is unsigned. Many stdlib functions, including malloc, sizeof and various string operation functions use size_t as a datatype.

An int is signed by default, and even though its size is also platform dependant, it will be a fixed 32bits on most modern machine (and though size_t is 64 bits on 64-bits architecture, int remain 32bits long on those architectures).

To summarize : use size_t to represent the size of an object and int (or long) in other cases.


It's because size_t can be anything other than an int (maybe a struct). The idea is that it decouples it's job from the underlying type.


The definition of SIZE_T is found at: https://msdn.microsoft.com/en-us/library/cc441980.aspx and https://msdn.microsoft.com/en-us/library/cc230394.aspx

Pasting here the required information:

SIZE_T is a ULONG_PTR representing the maximum number of bytes to which a pointer can point.

This type is declared as follows:

typedef ULONG_PTR SIZE_T;

A ULONG_PTR is an unsigned long type used for pointer precision. It is used when casting a pointer to a long type to perform pointer arithmetic.

This type is declared as follows:

typedef unsigned __int3264 ULONG_PTR;

The size_t type is defined as the unsigned integral type of the sizeof operator. In the real world, you will often see int defined as 32 bits (for backward compatibility) but size_t defined as 64 bits (so you can declare arrays and structures more than 4 GiB in size) on 64-bit platforms. If a long int is also 64-bits, this is called the LP64 convention; if long int is 32 bits but long long int and pointers are 64 bits, that’s LLP64. You also might get the reverse, a program that uses 64-bit instructions for speed, but 32-bit pointers to save memory. Also, int is signed and size_t is unsigned.

There were historically a number of other platforms where addresses were wider or shorter than the native size of int. In fact, in the ’70s and early ’80s, this was more common than not: all the popular 8-bit microcomputers had 8-bit registers and 16-bit addresses, and the transition between 16 and 32 bits also produced many machines that had addresses wider than their registers. I occasionally still see questions here about Borland Turbo C for MS-DOS, whose Huge memory mode had 20-bit addresses stored in 32 bits on a 16-bit CPU (but which could support the 32-bit instruction set of the 80386); the Motorola 68000 had a 16-bit ALU with 32-bit registers and addresses; there were IBM mainframes with 15-bit, 24-bit or 31-bit addresses. You also still see different ALU and address-bus sizes in embedded systems.

Any time int is smaller than size_t, and you try to store the size or offset of a very large file or object in an unsigned int, there is the possibility that it could overflow and cause a bug. With an int, there is also the possibility of getting a negative number. If an int or unsigned int is wider, the program will run correctly but waste memory.

You should generally use the correct type for the purpose if you want portability. A lot of people will recommend that you use signed math instead of unsigned (to avoid nasty, subtle bugs like 1U < -3). For that purpose, the standard library defines ptrdiff_t in <stddef.h> as the signed type of the result of subtracting a pointer from another.

That said, a workaround might be to bounds-check all addresses and offsets against INT_MAX and either 0 or INT_MIN as appropriate, and turn on the compiler warnings about comparing signed and unsigned quantities in case you miss any. You should always, always, always be checking your array accesses for overflow in C anyway.


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to c

conflicting types for 'outchar' Can't compile C program on a Mac after upgrade to Mojave Program to find largest and second largest number in array Prime numbers between 1 to 100 in C Programming Language In c, in bool, true == 1 and false == 0? How I can print to stderr in C? Visual Studio Code includePath "error: assignment to expression with array type error" when I assign a struct field (C) Compiling an application for use in highly radioactive environments How can you print multiple variables inside a string using printf?

Examples related to types

Cannot invoke an expression whose type lacks a call signature How to declare a Fixed length Array in TypeScript Typescript input onchange event.target.value Error: Cannot invoke an expression whose type lacks a call signature Class constructor type in typescript? What is dtype('O'), in pandas? YAML equivalent of array of objects in JSON Converting std::__cxx11::string to std::string Append a tuple to a list - what's the difference between two ways? How to check if type is Boolean

Examples related to int

How can I convert a char to int in Java? How to take the nth digit of a number in python "OverflowError: Python int too large to convert to C long" on windows but not mac Pandas: Subtracting two date columns and the result being an integer Convert bytes to int? How to round a Double to the nearest Int in swift? Leading zeros for Int in Swift C convert floating point to int Convert Int to String in Swift Converting String to Int with Swift