[sql] Equals(=) vs. LIKE

Different Operators

LIKE and = are different operators. Most answers here focus on the wildcard support, which is not the only difference between these operators!

= is a comparison operator that operates on numbers and strings. When comparing strings, the comparison operator compares whole strings.

LIKE is a string operator that compares character by character.

To complicate matters, both operators use a collation which can have important effects on the result of the comparison.

Motivating Example

Let's first identify an example where these operators produce obviously different results. Allow me to quote from the MySQL manual:

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+-----------------------------------------+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+-----------------------------------------+
|                                       0 |
+-----------------------------------------+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
|                                    1 |
+--------------------------------------+

Please note that this page of the MySQL manual is called String Comparison Functions, and = is not discussed, which implies that = is not strictly a string comparison function.

How Does = Work?

The SQL Standard § 8.2 describes how = compares strings:

The comparison of two character strings is determined as follows:

a) If the length in characters of X is not equal to the length in characters of Y, then the shorter string is effectively replaced, for the purposes of comparison, with a copy of itself that has been extended to the length of the longer string by concatenation on the right of one or more pad characters, where the pad character is chosen based on CS. If CS has the NO PAD attribute, then the pad character is an implementation-dependent character different from any character in the character set of X and Y that collates less than any string under CS. Otherwise, the pad character is a .

b) The result of the comparison of X and Y is given by the collating sequence CS.

c) Depending on the collating sequence, two strings may compare as equal even if they are of different lengths or contain different sequences of characters. When the operations MAX, MIN, DISTINCT, references to a grouping column, and the UNION, EXCEPT, and INTERSECT operators refer to character strings, the specific value selected by these operations from a set of such equal values is implementation-dependent.

(Emphasis added.)

What does this mean? It means that when comparing strings, the = operator is just a thin wrapper around the current collation. A collation is a library that has various rules for comparing strings. Here's an example of a binary collation from MySQL:

static int my_strnncoll_binary(const CHARSET_INFO *cs __attribute__((unused)),
                               const uchar *s, size_t slen,
                               const uchar *t, size_t tlen,
                               my_bool t_is_prefix)
{
  size_t len= MY_MIN(slen,tlen);
  int cmp= memcmp(s,t,len);
  return cmp ? cmp : (int)((t_is_prefix ? len : slen) - tlen);
}

This particular collation happens to compare byte-by-byte (which is why it's called "binary" — it doesn't give any special meaning to strings). Other collations may provide more advanced comparisons.

For example, here is a UTF-8 collation that supports case-insensitive comparisons. The code is too long to paste here, but go to that link and read the body of my_strnncollsp_utf8mb4(). This collation can process multiple bytes at a time and it can apply various transforms (such as case insensitive comparison). The = operator is completely abstracted from the vagaries of the collation.

How Does LIKE Work?

The SQL Standard § 8.5 describes how LIKE compares strings:

The <predicate>

M LIKE P

is true if there exists a partitioning of M into substrings such that:

i) A substring of M is a sequence of 0 or more contiguous <character representation>s of M and each <character representation> of M is part of exactly one substring.

ii) If the i-th substring specifier of P is an arbitrary character specifier, the i-th substring of M is any single <character representation>.

iii) If the i-th substring specifier of P is an arbitrary string specifier, then the i-th substring of M is any sequence of 0 or more <character representation>s.

iv) If the i-th substring specifier of P is neither an arbitrary character specifier nor an arbitrary string specifier, then the i-th substring of M is equal to that substring specifier according to the collating sequence of the <like predicate>, without the appending of <space> characters to M, and has the same length as that substring specifier.

v) The number of substrings of M is equal to the number of substring specifiers of P.

(Emphasis added.)

This is pretty wordy, so let's break it down. Items ii and iii refer to the wildcards _ and %, respectively. If P does not contain any wildcards, then only item iv applies. This is the case of interest posed by the OP.

In this case, it compares each "substring" (individual characters) in M against each substring in P using the current collation.

Conclusions

The bottom line is that when comparing strings, = compares the entire string while LIKE compares one character at a time. Both comparisons use the current collation. This difference leads to different results in some cases, as evidenced in the first example in this post.

Which one should you use? Nobody can tell you that — you need to use the one that's correct for your use case. Don't prematurely optimize by switching comparison operators.

Examples related to sql

Passing multiple values for same variable in stored procedure SQL permissions for roles Generic XSLT Search and Replace template Access And/Or exclusions Pyspark: Filter dataframe based on multiple conditions Subtracting 1 day from a timestamp date PYODBC--Data source name not found and no default driver specified select rows in sql with latest date for each ID repeated multiple times ALTER TABLE DROP COLUMN failed because one or more objects access this column Create Local SQL Server database

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to equals

this in equals method Why do we have to override the equals() method in Java? Compare two objects with .equals() and == operator Check if bash variable equals 0 Setting equal heights for div's with jQuery Java, how to compare Strings with String Arrays How can I express that two values are not equal to eachother? How to override equals method in Java How do you say not equal to in Ruby? Getting an element from a Set

Examples related to sql-like

SQL Server: use CASE with LIKE Create hive table using "as select" or "like" and also specify delimiter How do I find ' % ' with the LIKE operator in SQL Server? Using LIKE operator with stored procedure parameters SQL- Ignore case while searching for a string Is the LIKE operator case-sensitive with MSSQL Server? Using Eloquent ORM in Laravel to perform search of database using LIKE SQL 'LIKE' query using '%' where the search criteria contains '%' How to use "like" and "not like" in SQL MSAccess for the same field? MySQL SELECT LIKE or REGEXP to match multiple words in one record