[sql-server] What do Clustered and Non clustered index actually mean?

In SQL Server, row-oriented storage both clustered and nonclustered indexes are organized as B trees.

enter image description here

(Image Source)

The key difference between clustered indexes and non clustered indexes is that the leaf level of the clustered index is the table. This has two implications.

  1. The rows on the clustered index leaf pages always contain something for each of the (non-sparse) columns in the table (either the value or a pointer to the actual value).
  2. The clustered index is the primary copy of a table.

Non clustered indexes can also do point 1 by using the INCLUDE clause (Since SQL Server 2005) to explicitly include all non-key columns but they are secondary representations and there is always another copy of the data around (the table itself).

CREATE TABLE T
(
A INT,
B INT,
C INT,
D INT
)

CREATE UNIQUE CLUSTERED INDEX ci ON T(A, B)
CREATE UNIQUE NONCLUSTERED INDEX nci ON T(A, B) INCLUDE (C, D)

The two indexes above will be nearly identical. With the upper-level index pages containing values for the key columns A, B and the leaf level pages containing A, B, C, D

There can be only one clustered index per table, because the data rows themselves can be sorted in only one order.

The above quote from SQL Server books online causes much confusion

In my opinion, it would be much better phrased as.

There can be only one clustered index per table because the leaf level rows of the clustered index are the table rows.

The book's online quote is not incorrect but you should be clear that the "sorting" of both non clustered and clustered indices is logical, not physical. If you read the pages at leaf level by following the linked list and read the rows on the page in slot array order then you will read the index rows in sorted order but physically the pages may not be sorted. The commonly held belief that with a clustered index the rows are always stored physically on the disk in the same order as the index key is false.

This would be an absurd implementation. For example, if a row is inserted into the middle of a 4GB table SQL Server does not have to copy 2GB of data up in the file to make room for the newly inserted row.

Instead, a page split occurs. Each page at the leaf level of both clustered and non clustered indexes has the address (File: Page) of the next and previous page in logical key order. These pages need not be either contiguous or in key order.

e.g. the linked page chain might be 1:2000 <-> 1:157 <-> 1:7053

When a page split happens a new page is allocated from anywhere in the filegroup (from either a mixed extent, for small tables or a non-empty uniform extent belonging to that object or a newly allocated uniform extent). This might not even be in the same file if the filegroup contains more than one.

The degree to which the logical order and contiguity differ from the idealized physical version is the degree of logical fragmentation.

In a newly created database with a single file, I ran the following.

CREATE TABLE T
  (
     X TINYINT NOT NULL,
     Y CHAR(3000) NULL
  );

CREATE CLUSTERED INDEX ix
  ON T(X);

GO

--Insert 100 rows with values 1 - 100 in random order
DECLARE @C1 AS CURSOR,
        @X  AS INT

SET @C1 = CURSOR FAST_FORWARD
FOR SELECT number
    FROM   master..spt_values
    WHERE  type = 'P'
           AND number BETWEEN 1 AND 100
    ORDER  BY CRYPT_GEN_RANDOM(4)

OPEN @C1;

FETCH NEXT FROM @C1 INTO @X;

WHILE @@FETCH_STATUS = 0
  BEGIN
      INSERT INTO T (X)
      VALUES        (@X);

      FETCH NEXT FROM @C1 INTO @X;
  END

Then checked the page layout with

SELECT page_id,
       X,
       geometry::Point(page_id, X, 0).STBuffer(1)
FROM   T
       CROSS APPLY sys.fn_PhysLocCracker( %% physloc %% )
ORDER  BY page_id

The results were all over the place. The first row in key order (with value 1 - highlighted with an arrow below) was on nearly the last physical page.

enter image description here

Fragmentation can be reduced or removed by rebuilding or reorganizing an index to increase the correlation between logical order and physical order.

After running

ALTER INDEX ix ON T REBUILD;

I got the following

enter image description here

If the table has no clustered index it is called a heap.

Non clustered indexes can be built on either a heap or a clustered index. They always contain a row locator back to the base table. In the case of a heap, this is a physical row identifier (rid) and consists of three components (File:Page: Slot). In the case of a Clustered index, the row locator is logical (the clustered index key).

For the latter case if the non clustered index already naturally includes the CI key column(s) either as NCI key columns or INCLUDE-d columns then nothing is added. Otherwise, the missing CI key column(s) silently gets added to the NCI.

SQL Server always ensures that the key columns are unique for both types of indexes. The mechanism in which this is enforced for indexes not declared as unique differs between the two index types, however.

Clustered indexes get a uniquifier added for any rows with key values that duplicate an existing row. This is just an ascending integer.

For non clustered indexes not declared as unique SQL Server silently adds the row locator into the non clustered index key. This applies to all rows, not just those that are actually duplicates.

The clustered vs non clustered nomenclature is also used for column store indexes. The paper Enhancements to SQL Server Column Stores states

Although column store data is not really "clustered" on any key, we decided to retain the traditional SQL Server convention of referring to the primary index as a clustered index.

Examples related to sql-server

Passing multiple values for same variable in stored procedure SQL permissions for roles Count the Number of Tables in a SQL Server Database Visual Studio 2017 does not have Business Intelligence Integration Services/Projects ALTER TABLE DROP COLUMN failed because one or more objects access this column Create Local SQL Server database How to create temp table using Create statement in SQL Server? SQL Query Where Date = Today Minus 7 Days How do I pass a list as a parameter in a stored procedure? SQL Server date format yyyymmdd

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder

Examples related to indexing

numpy array TypeError: only integer scalar arrays can be converted to a scalar index How to print a specific row of a pandas DataFrame? What does 'index 0 is out of bounds for axis 0 with size 0' mean? How does String.Index work in Swift Pandas KeyError: value not in index Update row values where certain condition is met in pandas Pandas split DataFrame by column value Rebuild all indexes in a Database How are iloc and loc different? pandas loc vs. iloc vs. at vs. iat?

Examples related to clustered-index

Difference between clustered and nonclustered index What do Clustered and Non clustered index actually mean? What are the differences between a clustered and a non-clustered index?

Examples related to non-clustered-index

How to drop a unique constraint from table column? Difference between clustered and nonclustered index What do Clustered and Non clustered index actually mean? What are the differences between a clustered and a non-clustered index?