Pandas split DataFrame by column value

The Solution to Pandas split DataFrame by column value is


You can use boolean indexing:

df = pd.DataFrame({'Sales':[10,20,30,40,50], 'A':[3,4,7,6,1]})
print (df)
   A  Sales
0  3     10
1  4     20
2  7     30
3  6     40
4  1     50

s = 30

df1 = df[df['Sales'] >= s]
print (df1)
   A  Sales
2  7     30
3  6     40
4  1     50

df2 = df[df['Sales'] < s]
print (df2)
   A  Sales
0  3     10
1  4     20

It's also possible to invert mask by ~:

mask = df['Sales'] >= s
df1 = df[mask]
df2 = df[~mask]
print (df1)
   A  Sales
2  7     30
3  6     40
4  1     50

print (df2)
   A  Sales
0  3     10
1  4     20

print (mask)
0    False
1    False
2     True
3     True
4     True
Name: Sales, dtype: bool

print (~mask)
0     True
1     True
2    False
3    False
4    False
Name: Sales, dtype: bool

~ Answered on 2015-11-16 19:13:40


Most Viewed Questions: